Cargando…

Interrogating Transcriptional Regulatory Sequences in Tol2-Mediated Xenopus Transgenics

Identifying gene regulatory elements and their target genes in vertebrates remains a significant challenge. It is now recognized that transcriptional regulatory sequences are critical in orchestrating dynamic controls of tissue-specific gene expression during vertebrate development and in adult tiss...

Descripción completa

Detalles Bibliográficos
Autores principales: Loots, Gabriela G., Bergmann, Anne, Hum, Nicholas R., Oldenburg, Catherine E., Wills, Andrea E., Hu, Na, Ovcharenko, Ivan, Harland, Richard M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713029/
https://www.ncbi.nlm.nih.gov/pubmed/23874664
http://dx.doi.org/10.1371/journal.pone.0068548
Descripción
Sumario:Identifying gene regulatory elements and their target genes in vertebrates remains a significant challenge. It is now recognized that transcriptional regulatory sequences are critical in orchestrating dynamic controls of tissue-specific gene expression during vertebrate development and in adult tissues, and that these elements can be positioned at great distances in relation to the promoters of the genes they control. While significant progress has been made in mapping DNA binding regions by combining chromatin immunoprecipitation and next generation sequencing, functional validation remains a limiting step in improving our ability to correlate in silico predictions with biological function. We recently developed a computational method that synergistically combines genome-wide gene-expression profiling, vertebrate genome comparisons, and transcription factor binding-site analysis to predict tissue-specific enhancers in the human genome. We applied this method to 270 genes highly expressed in skeletal muscle and predicted 190 putative cis-regulatory modules. Furthermore, we optimized Tol2 transgenic constructs in Xenopus laevis to interrogate 20 of these elements for their ability to function as skeletal muscle-specific transcriptional enhancers during embryonic development. We found 45% of these elements expressed only in the fast muscle fibers that are oriented in highly organized chevrons in the Xenopus laevis tadpole. Transcription factor binding site analysis identified >2 Mef2/MyoD sites within ∼200 bp regions in 6 of the validated enhancers, and systematic mutagenesis of these sites revealed that they are critical for the enhancer function. The data described herein introduces a new reporter system suitable for interrogating tissue-specific cis-regulatory elements which allows monitoring of enhancer activity in real time, throughout early stages of embryonic development, in Xenopus.