Cargando…
Magnetostrictive thin films for microwave spintronics
Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713564/ https://www.ncbi.nlm.nih.gov/pubmed/23860685 http://dx.doi.org/10.1038/srep02220 |
_version_ | 1782277205420670976 |
---|---|
author | Parkes, D. E. Shelford, L. R. Wadley, P. Holý, V. Wang, M. Hindmarch, A. T. van der Laan, G. Campion, R. P. Edmonds, K. W. Cavill, S. A. Rushforth, A. W. |
author_facet | Parkes, D. E. Shelford, L. R. Wadley, P. Holý, V. Wang, M. Hindmarch, A. T. van der Laan, G. Campion, R. P. Edmonds, K. W. Cavill, S. A. Rushforth, A. W. |
author_sort | Parkes, D. E. |
collection | PubMed |
description | Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe(81)Ga(19)) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications. |
format | Online Article Text |
id | pubmed-3713564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-37135642013-07-17 Magnetostrictive thin films for microwave spintronics Parkes, D. E. Shelford, L. R. Wadley, P. Holý, V. Wang, M. Hindmarch, A. T. van der Laan, G. Campion, R. P. Edmonds, K. W. Cavill, S. A. Rushforth, A. W. Sci Rep Article Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe(81)Ga(19)) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications. Nature Publishing Group 2013-07-17 /pmc/articles/PMC3713564/ /pubmed/23860685 http://dx.doi.org/10.1038/srep02220 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Article Parkes, D. E. Shelford, L. R. Wadley, P. Holý, V. Wang, M. Hindmarch, A. T. van der Laan, G. Campion, R. P. Edmonds, K. W. Cavill, S. A. Rushforth, A. W. Magnetostrictive thin films for microwave spintronics |
title | Magnetostrictive thin films for microwave spintronics |
title_full | Magnetostrictive thin films for microwave spintronics |
title_fullStr | Magnetostrictive thin films for microwave spintronics |
title_full_unstemmed | Magnetostrictive thin films for microwave spintronics |
title_short | Magnetostrictive thin films for microwave spintronics |
title_sort | magnetostrictive thin films for microwave spintronics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713564/ https://www.ncbi.nlm.nih.gov/pubmed/23860685 http://dx.doi.org/10.1038/srep02220 |
work_keys_str_mv | AT parkesde magnetostrictivethinfilmsformicrowavespintronics AT shelfordlr magnetostrictivethinfilmsformicrowavespintronics AT wadleyp magnetostrictivethinfilmsformicrowavespintronics AT holyv magnetostrictivethinfilmsformicrowavespintronics AT wangm magnetostrictivethinfilmsformicrowavespintronics AT hindmarchat magnetostrictivethinfilmsformicrowavespintronics AT vanderlaang magnetostrictivethinfilmsformicrowavespintronics AT campionrp magnetostrictivethinfilmsformicrowavespintronics AT edmondskw magnetostrictivethinfilmsformicrowavespintronics AT cavillsa magnetostrictivethinfilmsformicrowavespintronics AT rushforthaw magnetostrictivethinfilmsformicrowavespintronics |