Cargando…

Magnetostrictive thin films for microwave spintronics

Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with...

Descripción completa

Detalles Bibliográficos
Autores principales: Parkes, D. E., Shelford, L. R., Wadley, P., Holý, V., Wang, M., Hindmarch, A. T., van der Laan, G., Campion, R. P., Edmonds, K. W., Cavill, S. A., Rushforth, A. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713564/
https://www.ncbi.nlm.nih.gov/pubmed/23860685
http://dx.doi.org/10.1038/srep02220
_version_ 1782277205420670976
author Parkes, D. E.
Shelford, L. R.
Wadley, P.
Holý, V.
Wang, M.
Hindmarch, A. T.
van der Laan, G.
Campion, R. P.
Edmonds, K. W.
Cavill, S. A.
Rushforth, A. W.
author_facet Parkes, D. E.
Shelford, L. R.
Wadley, P.
Holý, V.
Wang, M.
Hindmarch, A. T.
van der Laan, G.
Campion, R. P.
Edmonds, K. W.
Cavill, S. A.
Rushforth, A. W.
author_sort Parkes, D. E.
collection PubMed
description Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe(81)Ga(19)) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.
format Online
Article
Text
id pubmed-3713564
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-37135642013-07-17 Magnetostrictive thin films for microwave spintronics Parkes, D. E. Shelford, L. R. Wadley, P. Holý, V. Wang, M. Hindmarch, A. T. van der Laan, G. Campion, R. P. Edmonds, K. W. Cavill, S. A. Rushforth, A. W. Sci Rep Article Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe(81)Ga(19)) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications. Nature Publishing Group 2013-07-17 /pmc/articles/PMC3713564/ /pubmed/23860685 http://dx.doi.org/10.1038/srep02220 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Article
Parkes, D. E.
Shelford, L. R.
Wadley, P.
Holý, V.
Wang, M.
Hindmarch, A. T.
van der Laan, G.
Campion, R. P.
Edmonds, K. W.
Cavill, S. A.
Rushforth, A. W.
Magnetostrictive thin films for microwave spintronics
title Magnetostrictive thin films for microwave spintronics
title_full Magnetostrictive thin films for microwave spintronics
title_fullStr Magnetostrictive thin films for microwave spintronics
title_full_unstemmed Magnetostrictive thin films for microwave spintronics
title_short Magnetostrictive thin films for microwave spintronics
title_sort magnetostrictive thin films for microwave spintronics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713564/
https://www.ncbi.nlm.nih.gov/pubmed/23860685
http://dx.doi.org/10.1038/srep02220
work_keys_str_mv AT parkesde magnetostrictivethinfilmsformicrowavespintronics
AT shelfordlr magnetostrictivethinfilmsformicrowavespintronics
AT wadleyp magnetostrictivethinfilmsformicrowavespintronics
AT holyv magnetostrictivethinfilmsformicrowavespintronics
AT wangm magnetostrictivethinfilmsformicrowavespintronics
AT hindmarchat magnetostrictivethinfilmsformicrowavespintronics
AT vanderlaang magnetostrictivethinfilmsformicrowavespintronics
AT campionrp magnetostrictivethinfilmsformicrowavespintronics
AT edmondskw magnetostrictivethinfilmsformicrowavespintronics
AT cavillsa magnetostrictivethinfilmsformicrowavespintronics
AT rushforthaw magnetostrictivethinfilmsformicrowavespintronics