Cargando…

Relaxation Along a Fictitious Field (RAFF) and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI) in Permanent Focal Cerebral Ischemia in Rat

Cerebral ischemia alters the molecular dynamics and content of water in brain tissue, which is reflected in NMR relaxation, diffusion and magnetization transfer (MT) parameters. In this study, the behavior of two new MRI contrasts, Relaxation Along a Fictitious Field (RAFF) and Z-spectroscopy using...

Descripción completa

Detalles Bibliográficos
Autores principales: Jokivarsi, Kimmo T., Liimatainen, Timo, Kauppinen, Risto A., Gröhn, Olli H. J., Närväinen, Johanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714241/
https://www.ncbi.nlm.nih.gov/pubmed/23874898
http://dx.doi.org/10.1371/journal.pone.0069157
Descripción
Sumario:Cerebral ischemia alters the molecular dynamics and content of water in brain tissue, which is reflected in NMR relaxation, diffusion and magnetization transfer (MT) parameters. In this study, the behavior of two new MRI contrasts, Relaxation Along a Fictitious Field (RAFF) and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI), were quantified together with conventional relaxation parameters (T(1), T(2) and T(1ρ)) and MT ratios in acute cerebral ischemia in rat. The right middle cerebral artery was permanently occluded and quantitative MRI data was acquired sequentially for the above parameters for up to 6 hours. The following conclusions were drawn: 1) Time-dependent changes in RAFF and T(1ρ) relaxation are not coupled to those in MT. 2) RAFF relaxation evolves more like transverse, rather than longitudinal relaxation. 3) MT measured with ZAPI is less sensitive to ischemia than conventional MT. 4) ZAPI data suggest alterations in the T(2) distribution of macromolecules in acute cerebral ischemia. It was shown that both RAFF and ZAPI provide complementary MRI information from acute ischemic brain tissue. The presented multiparametric MRI data may aid in the assessment of brain tissue status early in ischemic stroke.