Cargando…
Free and Forced Rossby Waves in the Western South China Sea Inferred from Jason-1 Satellite Altimetry Data
Data from a subsurface mooring deployed in the western South China Sea shows clear intra-seasonal oscillations (ISO) at the period of 40∼70 days. Analysis of remotely-sensed sea surface height (SSH) anomalies in the same area indicates that these ISO signals propagate both eastward and westward. Tim...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714658/ https://www.ncbi.nlm.nih.gov/pubmed/27879897 http://dx.doi.org/10.3390/s8063634 |
Sumario: | Data from a subsurface mooring deployed in the western South China Sea shows clear intra-seasonal oscillations (ISO) at the period of 40∼70 days. Analysis of remotely-sensed sea surface height (SSH) anomalies in the same area indicates that these ISO signals propagate both eastward and westward. Time-longitude diagrams of ISO signals in SSH anomalies and wind-stress curl indicate that the eastward propagating SSH anomalies is forced by wind-stress curl. This is also confirmed by lag correlation between SSH anomalies and the wind-stress-curl index (wind stress curl averaged over 109.5°E -115°E and 12°N -13.5°N). Lag correlation of SSH anomaly suggests that the westward propagating signals are free Rossby waves. |
---|