Cargando…
Flow-Injection Coulometric Detection Based on Ion Transfer and Its Application to the Determination of Chlorpromazine
A flow-injection coulometric method for the determination of chlorpromazine based on ion transfer into a plasticized poly(vinyl chloride) (PVC) membrane, was developed. The detector used consists of a flow-through cell that incorporates a plasticized poly(vinyl chloride) (PVC) membrane which contain...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714659/ https://www.ncbi.nlm.nih.gov/pubmed/27879901 http://dx.doi.org/10.3390/s8063678 |
Sumario: | A flow-injection coulometric method for the determination of chlorpromazine based on ion transfer into a plasticized poly(vinyl chloride) (PVC) membrane, was developed. The detector used consists of a flow-through cell that incorporates a plasticized poly(vinyl chloride) (PVC) membrane which contains tetrabutylammonium tetraphenylborate as electrolyte. The membrane is located between the flowing solution and an inner aqueous electrolyte solution. Two pairs of electrodes, each pair formed by a reference electrode and a working electrode, are used, one pair in each solution. The potential between the reference electrodes was controlled by a four-electrode potentiostat with ohmic drop compensation. A potential step capable of producing the transfer of the chlorpromazine ion into the membrane was applied during the passage of a wide portion of sample plug through the cell and the corresponding quantity of the electricity was measured. In the selected conditions, a linear relationship was observed between the quantity of electricity and chlorpromazine concentrations over a range of 1×10(-6) −1×10(-4) M. The detection limit was 2 × 10(-7) M. Good repeatability and between-day reproducibility was obtained. No interference was observed on the part of some common ions and pharmaceutical excipients. The method proposed was applied satisfactorily to the determination of chlorpromazine in pharmaceuticals and human urine. |
---|