Cargando…

Improved relationship between left and right ventricular electrical activation after cardiac resynchronization therapy in heart failure patients can be quantified by body surface potential mapping

OBJECTIVES: Few studies have evaluated cardiac electrical activation dynamics after cardiac resynchronization therapy. Although this procedure reduces morbidity and mortality in heart failure patients, many approaches attempting to identify the responders have shown that 30% of patients do not attai...

Descripción completa

Detalles Bibliográficos
Autores principales: Samesima, Nelson, Pastore, Carlos Alberto, Douglas, Roberto Andrés, Filho, Martino Martinelli, Pedrosa, Anísio A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715027/
https://www.ncbi.nlm.nih.gov/pubmed/23917664
http://dx.doi.org/10.6061/clinics/2013(07)16
Descripción
Sumario:OBJECTIVES: Few studies have evaluated cardiac electrical activation dynamics after cardiac resynchronization therapy. Although this procedure reduces morbidity and mortality in heart failure patients, many approaches attempting to identify the responders have shown that 30% of patients do not attain clinical or functional improvement. This study sought to quantify and characterize the effect of resynchronization therapy on the ventricular electrical activation of patients using body surface potential mapping, a noninvasive tool. METHODS: This retrospective study included 91 resynchronization patients with a mean age of 61 years, left ventricle ejection fraction of 28%, mean QRS duration of 182 ms, and functional class III/IV (78%/22%); the patients underwent 87-lead body surface mapping with the resynchronization device on and off. Thirty-six patients were excluded. Body surface isochronal maps produced 87 maximal/mean global ventricular activation times with three regions identified. The regional activation times for right and left ventricles and their inter-regional right-to-left ventricle gradients were calculated from these results and analyzed. The Mann-Whitney U-test and Kruskall-Wallis test were used for comparisons, with the level of significance set at p≤0.05. RESULTS: During intrinsic rhythms, regional ventricular activation times were significantly different (54.5 ms vs. 95.9 ms in the right and left ventricle regions, respectively). Regarding cardiac resynchronization, the maximal global value was significantly reduced (138 ms to 131 ms), and a downward variation of 19.4% in regional-left and an upward variation of 44.8% in regional-right ventricular activation times resulted in a significantly reduced inter-regional gradient (43.8 ms to 17 ms). CONCLUSIONS: Body surface potential mapping in resynchronization patients yielded electrical ventricular activation times for two cardiac regions with significantly decreased global and regional-left values but significantly increased regional-right values, thus showing an attenuated inter-regional gradient after the cardiac resynchronization therapy.