Cargando…
Non-Invasive Continuous Glucose Monitoring with Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness
In diabetes research, non-invasive continuous glucose monitoring (NI-CGM) devices represent a new and appealing frontier. In the last years, some multi-sensor devices for NI-CGM have been proposed, which exploit several sensors measuring phenomena of different nature, not only for measuring glucose...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715227/ https://www.ncbi.nlm.nih.gov/pubmed/23736850 http://dx.doi.org/10.3390/s130607279 |
_version_ | 1782277421149454336 |
---|---|
author | Zanon, Mattia Sparacino, Giovanni Facchinetti, Andrea Talary, Mark S. Mueller, Martin Caduff, Andreas Cobelli, Claudio |
author_facet | Zanon, Mattia Sparacino, Giovanni Facchinetti, Andrea Talary, Mark S. Mueller, Martin Caduff, Andreas Cobelli, Claudio |
author_sort | Zanon, Mattia |
collection | PubMed |
description | In diabetes research, non-invasive continuous glucose monitoring (NI-CGM) devices represent a new and appealing frontier. In the last years, some multi-sensor devices for NI-CGM have been proposed, which exploit several sensors measuring phenomena of different nature, not only for measuring glucose related signals, but also signals reflecting some possible perturbing processes (temperature, blood perfusion). Estimation of glucose levels is then obtained combining these signals through a mathematical model which requires an initial calibration step exploiting one reference blood glucose (RBG) sample. Even if promising results have been obtained, especially in hospitalized volunteers, at present the temporal accuracy of NI-CGM sensors may suffer because of environmental and physiological interferences. The aim of this work is to develop a general methodology, based on Monte Carlo (MC) simulation, to assess the robustness of the calibration step used by NI-CGM devices against these disturbances. The proposed methodology is illustrated considering two examples: the first concerns the possible detrimental influence of sweat events, while the second deals with calibration scheduling. For implementing both examples, 45 datasets collected by the Solianis Multisensor system are considered. In the first example, the MC methodology suggests that no further calibration adjustments are needed after the occurrence of sweat events, because the “Multisensor+model” system is able to deal with the disturbance. The second case study shows how to identify the best time interval to update the model's calibration for improving the accuracy of the estimated glucose. The methodology proposed in this work is of general applicability and can be helpful in making those incremental steps in NI-CGM devices development needed to further improve their performance. |
format | Online Article Text |
id | pubmed-3715227 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-37152272013-07-24 Non-Invasive Continuous Glucose Monitoring with Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness Zanon, Mattia Sparacino, Giovanni Facchinetti, Andrea Talary, Mark S. Mueller, Martin Caduff, Andreas Cobelli, Claudio Sensors (Basel) Article In diabetes research, non-invasive continuous glucose monitoring (NI-CGM) devices represent a new and appealing frontier. In the last years, some multi-sensor devices for NI-CGM have been proposed, which exploit several sensors measuring phenomena of different nature, not only for measuring glucose related signals, but also signals reflecting some possible perturbing processes (temperature, blood perfusion). Estimation of glucose levels is then obtained combining these signals through a mathematical model which requires an initial calibration step exploiting one reference blood glucose (RBG) sample. Even if promising results have been obtained, especially in hospitalized volunteers, at present the temporal accuracy of NI-CGM sensors may suffer because of environmental and physiological interferences. The aim of this work is to develop a general methodology, based on Monte Carlo (MC) simulation, to assess the robustness of the calibration step used by NI-CGM devices against these disturbances. The proposed methodology is illustrated considering two examples: the first concerns the possible detrimental influence of sweat events, while the second deals with calibration scheduling. For implementing both examples, 45 datasets collected by the Solianis Multisensor system are considered. In the first example, the MC methodology suggests that no further calibration adjustments are needed after the occurrence of sweat events, because the “Multisensor+model” system is able to deal with the disturbance. The second case study shows how to identify the best time interval to update the model's calibration for improving the accuracy of the estimated glucose. The methodology proposed in this work is of general applicability and can be helpful in making those incremental steps in NI-CGM devices development needed to further improve their performance. Molecular Diversity Preservation International (MDPI) 2013-06-03 /pmc/articles/PMC3715227/ /pubmed/23736850 http://dx.doi.org/10.3390/s130607279 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license(http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Zanon, Mattia Sparacino, Giovanni Facchinetti, Andrea Talary, Mark S. Mueller, Martin Caduff, Andreas Cobelli, Claudio Non-Invasive Continuous Glucose Monitoring with Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness |
title | Non-Invasive Continuous Glucose Monitoring with Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness |
title_full | Non-Invasive Continuous Glucose Monitoring with Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness |
title_fullStr | Non-Invasive Continuous Glucose Monitoring with Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness |
title_full_unstemmed | Non-Invasive Continuous Glucose Monitoring with Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness |
title_short | Non-Invasive Continuous Glucose Monitoring with Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness |
title_sort | non-invasive continuous glucose monitoring with multi-sensor systems: a monte carlo-based methodology for assessing calibration robustness |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715227/ https://www.ncbi.nlm.nih.gov/pubmed/23736850 http://dx.doi.org/10.3390/s130607279 |
work_keys_str_mv | AT zanonmattia noninvasivecontinuousglucosemonitoringwithmultisensorsystemsamontecarlobasedmethodologyforassessingcalibrationrobustness AT sparacinogiovanni noninvasivecontinuousglucosemonitoringwithmultisensorsystemsamontecarlobasedmethodologyforassessingcalibrationrobustness AT facchinettiandrea noninvasivecontinuousglucosemonitoringwithmultisensorsystemsamontecarlobasedmethodologyforassessingcalibrationrobustness AT talarymarks noninvasivecontinuousglucosemonitoringwithmultisensorsystemsamontecarlobasedmethodologyforassessingcalibrationrobustness AT muellermartin noninvasivecontinuousglucosemonitoringwithmultisensorsystemsamontecarlobasedmethodologyforassessingcalibrationrobustness AT caduffandreas noninvasivecontinuousglucosemonitoringwithmultisensorsystemsamontecarlobasedmethodologyforassessingcalibrationrobustness AT cobelliclaudio noninvasivecontinuousglucosemonitoringwithmultisensorsystemsamontecarlobasedmethodologyforassessingcalibrationrobustness |