Cargando…

Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems

Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ströbel, Ulrich, Rose-Meierhöfer, Sandra, Öz, Hülya, Brunsch, Reiner
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715241/
https://www.ncbi.nlm.nih.gov/pubmed/23765272
http://dx.doi.org/10.3390/s130607633
_version_ 1782277424424157184
author Ströbel, Ulrich
Rose-Meierhöfer, Sandra
Öz, Hülya
Brunsch, Reiner
author_facet Ströbel, Ulrich
Rose-Meierhöfer, Sandra
Öz, Hülya
Brunsch, Reiner
author_sort Ströbel, Ulrich
collection PubMed
description Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated.
format Online
Article
Text
id pubmed-3715241
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-37152412013-07-24 Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems Ströbel, Ulrich Rose-Meierhöfer, Sandra Öz, Hülya Brunsch, Reiner Sensors (Basel) Article Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. Molecular Diversity Preservation International (MDPI) 2013-06-13 /pmc/articles/PMC3715241/ /pubmed/23765272 http://dx.doi.org/10.3390/s130607633 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Ströbel, Ulrich
Rose-Meierhöfer, Sandra
Öz, Hülya
Brunsch, Reiner
Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems
title Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems
title_full Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems
title_fullStr Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems
title_full_unstemmed Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems
title_short Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems
title_sort development of a control system for the teat-end vacuum in individual quarter milking systems
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715241/
https://www.ncbi.nlm.nih.gov/pubmed/23765272
http://dx.doi.org/10.3390/s130607633
work_keys_str_mv AT strobelulrich developmentofacontrolsystemfortheteatendvacuuminindividualquartermilkingsystems
AT rosemeierhofersandra developmentofacontrolsystemfortheteatendvacuuminindividualquartermilkingsystems
AT ozhulya developmentofacontrolsystemfortheteatendvacuuminindividualquartermilkingsystems
AT brunschreiner developmentofacontrolsystemfortheteatendvacuuminindividualquartermilkingsystems