Cargando…
Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems
Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715241/ https://www.ncbi.nlm.nih.gov/pubmed/23765272 http://dx.doi.org/10.3390/s130607633 |
_version_ | 1782277424424157184 |
---|---|
author | Ströbel, Ulrich Rose-Meierhöfer, Sandra Öz, Hülya Brunsch, Reiner |
author_facet | Ströbel, Ulrich Rose-Meierhöfer, Sandra Öz, Hülya Brunsch, Reiner |
author_sort | Ströbel, Ulrich |
collection | PubMed |
description | Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. |
format | Online Article Text |
id | pubmed-3715241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-37152412013-07-24 Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems Ströbel, Ulrich Rose-Meierhöfer, Sandra Öz, Hülya Brunsch, Reiner Sensors (Basel) Article Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. Molecular Diversity Preservation International (MDPI) 2013-06-13 /pmc/articles/PMC3715241/ /pubmed/23765272 http://dx.doi.org/10.3390/s130607633 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Ströbel, Ulrich Rose-Meierhöfer, Sandra Öz, Hülya Brunsch, Reiner Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems |
title | Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems |
title_full | Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems |
title_fullStr | Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems |
title_full_unstemmed | Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems |
title_short | Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems |
title_sort | development of a control system for the teat-end vacuum in individual quarter milking systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715241/ https://www.ncbi.nlm.nih.gov/pubmed/23765272 http://dx.doi.org/10.3390/s130607633 |
work_keys_str_mv | AT strobelulrich developmentofacontrolsystemfortheteatendvacuuminindividualquartermilkingsystems AT rosemeierhofersandra developmentofacontrolsystemfortheteatendvacuuminindividualquartermilkingsystems AT ozhulya developmentofacontrolsystemfortheteatendvacuuminindividualquartermilkingsystems AT brunschreiner developmentofacontrolsystemfortheteatendvacuuminindividualquartermilkingsystems |