Cargando…
A Family of Algorithms for Computing Consensus about Node State from Network Data
Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715438/ https://www.ncbi.nlm.nih.gov/pubmed/23874167 http://dx.doi.org/10.1371/journal.pcbi.1003109 |
_version_ | 1782277454265581568 |
---|---|
author | Brush, Eleanor R. Krakauer, David C. Flack, Jessica C. |
author_facet | Brush, Eleanor R. Krakauer, David C. Flack, Jessica C. |
author_sort | Brush, Eleanor R. |
collection | PubMed |
description | Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which individuals use the collective opinions of others to make decisions. |
format | Online Article Text |
id | pubmed-3715438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37154382013-07-19 A Family of Algorithms for Computing Consensus about Node State from Network Data Brush, Eleanor R. Krakauer, David C. Flack, Jessica C. PLoS Comput Biol Research Article Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which individuals use the collective opinions of others to make decisions. Public Library of Science 2013-07-18 /pmc/articles/PMC3715438/ /pubmed/23874167 http://dx.doi.org/10.1371/journal.pcbi.1003109 Text en © 2013 Brush et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Brush, Eleanor R. Krakauer, David C. Flack, Jessica C. A Family of Algorithms for Computing Consensus about Node State from Network Data |
title | A Family of Algorithms for Computing Consensus about Node State from Network Data |
title_full | A Family of Algorithms for Computing Consensus about Node State from Network Data |
title_fullStr | A Family of Algorithms for Computing Consensus about Node State from Network Data |
title_full_unstemmed | A Family of Algorithms for Computing Consensus about Node State from Network Data |
title_short | A Family of Algorithms for Computing Consensus about Node State from Network Data |
title_sort | family of algorithms for computing consensus about node state from network data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715438/ https://www.ncbi.nlm.nih.gov/pubmed/23874167 http://dx.doi.org/10.1371/journal.pcbi.1003109 |
work_keys_str_mv | AT brusheleanorr afamilyofalgorithmsforcomputingconsensusaboutnodestatefromnetworkdata AT krakauerdavidc afamilyofalgorithmsforcomputingconsensusaboutnodestatefromnetworkdata AT flackjessicac afamilyofalgorithmsforcomputingconsensusaboutnodestatefromnetworkdata AT brusheleanorr familyofalgorithmsforcomputingconsensusaboutnodestatefromnetworkdata AT krakauerdavidc familyofalgorithmsforcomputingconsensusaboutnodestatefromnetworkdata AT flackjessicac familyofalgorithmsforcomputingconsensusaboutnodestatefromnetworkdata |