Cargando…

Strabismus Promotes Recruitment and Degradation of Farnesylated Prickle in Drosophila melanogaster Planar Polarity Specification

The core planar polarity proteins are required to specify the orientation of structures that are polarised in the plane of the epithelium. In the Drosophila melanogaster wing, the core proteins localise asymmetrically at either proximal or distal cell edges. Asymmetric localisation is thought to be...

Descripción completa

Detalles Bibliográficos
Autores principales: Strutt, Helen, Thomas-MacArthur, Vickie, Strutt, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715439/
https://www.ncbi.nlm.nih.gov/pubmed/23874239
http://dx.doi.org/10.1371/journal.pgen.1003654
Descripción
Sumario:The core planar polarity proteins are required to specify the orientation of structures that are polarised in the plane of the epithelium. In the Drosophila melanogaster wing, the core proteins localise asymmetrically at either proximal or distal cell edges. Asymmetric localisation is thought to be biased by long-range cues, causing asymmetric complexes to become aligned with the tissue axes. Core proteins are then thought to participate in feedback interactions that are necessary to amplify asymmetry, and in order for such feedback interactions to operate correctly, the levels of the core proteins at junctions must be tightly regulated. We have investigated regulation of the core protein Prickle (Pk) in the pupal wing. The core protein Strabismus (Stbm) is required to recruit Pk into asymmetric complexes at proximal cell ends, and we report here that it also promotes proteasomal degradation of excess Pk, probably via a Cullin-1 dependent process. We also show for the first time that Pk is farnesylated in vivo, and this is essential for Pk function in the wing. Notably, farnesylation of Pk is necessary for it to be recruited into asymmetric complexes and function in feedback amplification, probably by reinforcing weak direct interactions between Stbm and Pk. Furthermore, farnesylation is also required for Stbm to promote proteasomal degradation of Pk. We propose that Stbm recruits farnesylated Pk into asymmetric complexes, but also promotes degradation of excess Pk that would otherwise perturb feedback amplification.