Cargando…

Enhanced Open-Circuit Voltage of PbS Nanocrystal Quantum Dot Solar Cells

Nanocrystal quantum dots (QD) show great promise toward improving solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum and enable multi-exciton generation. Despite this remarkable potential for high photocurrent generation, the achievable open-c...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Woojun, Boercker, Janice E., Lumb, Matthew P., Placencia, Diogenes, Foos, Edward E., Tischler, Joseph G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715763/
https://www.ncbi.nlm.nih.gov/pubmed/23868514
http://dx.doi.org/10.1038/srep02225
Descripción
Sumario:Nanocrystal quantum dots (QD) show great promise toward improving solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum and enable multi-exciton generation. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (V(oc)) is fundamentally limited due to non-radiative recombination processes in QD solar cells. Here we report the highest open-circuit voltages to date for colloidal QD based solar cells under one sun illumination. This V(oc) of 692 ± 7 mV for 1.4 eV PbS QDs is a result of improved passivation of the defective QD surface, demonstrating [Image: see text] as a function of the QD bandgap (E(g)). Comparing experimental V(oc) variation with the theoretical upper-limit obtained from one diode modeling of the cells with different E(g), these results clearly demonstrate that there is a tremendous opportunity for improvement of V(oc) to values greater than 1 V by using smaller QDs in QD solar cells.