Cargando…
Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm
Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716889/ https://www.ncbi.nlm.nih.gov/pubmed/23894386 http://dx.doi.org/10.1371/journal.pone.0068986 |
_version_ | 1782277612743163904 |
---|---|
author | Lu, Chia-Feng Guo, Wan-Yuo Chang, Feng-Chi Huang, Shang-Ran Chou, Yen-Chun Wu, Yu-Te |
author_facet | Lu, Chia-Feng Guo, Wan-Yuo Chang, Feng-Chi Huang, Shang-Ran Chou, Yen-Chun Wu, Yu-Te |
author_sort | Lu, Chia-Feng |
collection | PubMed |
description | Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified. |
format | Online Article Text |
id | pubmed-3716889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37168892013-07-26 Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm Lu, Chia-Feng Guo, Wan-Yuo Chang, Feng-Chi Huang, Shang-Ran Chou, Yen-Chun Wu, Yu-Te PLoS One Research Article Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified. Public Library of Science 2013-07-19 /pmc/articles/PMC3716889/ /pubmed/23894386 http://dx.doi.org/10.1371/journal.pone.0068986 Text en © 2013 Lu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lu, Chia-Feng Guo, Wan-Yuo Chang, Feng-Chi Huang, Shang-Ran Chou, Yen-Chun Wu, Yu-Te Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm |
title | Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm |
title_full | Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm |
title_fullStr | Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm |
title_full_unstemmed | Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm |
title_short | Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm |
title_sort | hemodynamic segmentation of brain perfusion images with delay and dispersion effects using an expectation-maximization algorithm |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716889/ https://www.ncbi.nlm.nih.gov/pubmed/23894386 http://dx.doi.org/10.1371/journal.pone.0068986 |
work_keys_str_mv | AT luchiafeng hemodynamicsegmentationofbrainperfusionimageswithdelayanddispersioneffectsusinganexpectationmaximizationalgorithm AT guowanyuo hemodynamicsegmentationofbrainperfusionimageswithdelayanddispersioneffectsusinganexpectationmaximizationalgorithm AT changfengchi hemodynamicsegmentationofbrainperfusionimageswithdelayanddispersioneffectsusinganexpectationmaximizationalgorithm AT huangshangran hemodynamicsegmentationofbrainperfusionimageswithdelayanddispersioneffectsusinganexpectationmaximizationalgorithm AT chouyenchun hemodynamicsegmentationofbrainperfusionimageswithdelayanddispersioneffectsusinganexpectationmaximizationalgorithm AT wuyute hemodynamicsegmentationofbrainperfusionimageswithdelayanddispersioneffectsusinganexpectationmaximizationalgorithm |