Cargando…
Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm
Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles...
Autores principales: | Lu, Chia-Feng, Guo, Wan-Yuo, Chang, Feng-Chi, Huang, Shang-Ran, Chou, Yen-Chun, Wu, Yu-Te |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716889/ https://www.ncbi.nlm.nih.gov/pubmed/23894386 http://dx.doi.org/10.1371/journal.pone.0068986 |
Ejemplares similares
-
Blind Source Separation of Hemodynamics from Magnetic Resonance Perfusion Brain Images Using Independent Factor Analysis
por: Chou, Yen-Chun, et al.
Publicado: (2010) -
An efficient image segmentation method based on expectation maximization and Salp swarm algorithm
por: Ehsaeyan, Ehsan
Publicado: (2023) -
Extension of emission expectation maximization lookalike algorithms to Bayesian algorithms
por: Zeng, Gengsheng L., et al.
Publicado: (2019) -
Accelerating L(1)-penalized expectation maximization algorithm for latent variable selection in multidimensional two-parameter logistic models
por: Shang, Laixu, et al.
Publicado: (2023) -
Using Flat-Panel Perfusion Imaging to Measure Cerebral Hemodynamics: A Pilot Feasibility Study in Patients With Carotid Stenosis
por: Lin, Chung-Jung, et al.
Publicado: (2016)