Cargando…

Rare inheritance of Leri-Weill Syndrome due to crossover of short stature Homeobox Gene (SHOX) Deletions between X and Y Chromosomes: a case report

BACKGROUND: Leri-Weill syndrome (LWS) is a genetic disorder caused by deletions or mutations in the SHOX gene or by deletions downstream of the gene and is classically characterized by short stature, mesomelic shortening of forearms and legs, and Madelung deformity. Correct identification of short s...

Descripción completa

Detalles Bibliográficos
Autores principales: Censani, Marisa, Anyane-Yeboa, Kwame, Wapner, Ronald, Spiegel, Erica, Guzman, Edwin, Oberfield, Sharon E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716959/
https://www.ncbi.nlm.nih.gov/pubmed/23809065
http://dx.doi.org/10.1186/1687-9856-2013-11
Descripción
Sumario:BACKGROUND: Leri-Weill syndrome (LWS) is a genetic disorder caused by deletions or mutations in the SHOX gene or by deletions downstream of the gene and is classically characterized by short stature, mesomelic shortening of forearms and legs, and Madelung deformity. Correct identification of short stature homeobox-containing gene (SHOX) deficiency in children with growth problems is vital for appropriate initiation of growth hormone therapy. METHOD: We report a phenotypically normal 23 day old male infant born to a father diagnosed with Leri-Weill syndrome at age 12 years with a documented SHOX deletion on his X chromosome. The patient’s fetal long bones had been found to be about three weeks delayed in growth on prenatal ultrasound during the second trimester. RESULTS: The infant underwent genetic evaluation at 23 days of life and was found to have a SHOX deletion on Yp11.32 identified using single nucleotide polymorphism microarray (SNP) analysis and confirmed by FISH using a SHOX gene probe. CONCLUSION: We report the case of a male infant diagnosed with Leri-Weill syndrome with an unusual documented inheritance between father and son due to crossover between X and Y chromosomes during paternal meiosis. Our case is the youngest patient in literature documented by FISH analysis to have an X to Y chromosome transfer and the first of these patients diagnosed prior to onset of short stature or Madelung deformity. Our patient was identified prior to growth failure and can now be monitored for growth abnormalities with the ability to implement growth augmentation therapy without delay. Our case highlights the importance of advising affected SHOX patients of risks to future offspring and supports screening off-spring of parents carrying SHOX abnormalities regardless of sex.