Cargando…
Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle
BACKGROUND: In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. METHODS: 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucke...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717057/ https://www.ncbi.nlm.nih.gov/pubmed/23842456 http://dx.doi.org/10.1186/1743-7075-10-48 |
_version_ | 1782277650508677120 |
---|---|
author | Couturier, Aline Ringseis, Robert Mooren, Frank-Christoph Krüger, Karsten Most, Erika Eder, Klaus |
author_facet | Couturier, Aline Ringseis, Robert Mooren, Frank-Christoph Krüger, Karsten Most, Erika Eder, Klaus |
author_sort | Couturier, Aline |
collection | PubMed |
description | BACKGROUND: In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. METHODS: 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. RESULTS: The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). CONCLUSION: The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes. |
format | Online Article Text |
id | pubmed-3717057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-37170572013-07-21 Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle Couturier, Aline Ringseis, Robert Mooren, Frank-Christoph Krüger, Karsten Most, Erika Eder, Klaus Nutr Metab (Lond) Research BACKGROUND: In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. METHODS: 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. RESULTS: The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). CONCLUSION: The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes. BioMed Central 2013-07-10 /pmc/articles/PMC3717057/ /pubmed/23842456 http://dx.doi.org/10.1186/1743-7075-10-48 Text en Copyright © 2013 Couturier et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Couturier, Aline Ringseis, Robert Mooren, Frank-Christoph Krüger, Karsten Most, Erika Eder, Klaus Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle |
title | Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle |
title_full | Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle |
title_fullStr | Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle |
title_full_unstemmed | Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle |
title_short | Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle |
title_sort | carnitine supplementation to obese zucker rats prevents obesity-induced type ii to type i muscle fiber transition and favors an oxidative phenotype of skeletal muscle |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717057/ https://www.ncbi.nlm.nih.gov/pubmed/23842456 http://dx.doi.org/10.1186/1743-7075-10-48 |
work_keys_str_mv | AT couturieraline carnitinesupplementationtoobesezuckerratspreventsobesityinducedtypeiitotypeimusclefibertransitionandfavorsanoxidativephenotypeofskeletalmuscle AT ringseisrobert carnitinesupplementationtoobesezuckerratspreventsobesityinducedtypeiitotypeimusclefibertransitionandfavorsanoxidativephenotypeofskeletalmuscle AT moorenfrankchristoph carnitinesupplementationtoobesezuckerratspreventsobesityinducedtypeiitotypeimusclefibertransitionandfavorsanoxidativephenotypeofskeletalmuscle AT krugerkarsten carnitinesupplementationtoobesezuckerratspreventsobesityinducedtypeiitotypeimusclefibertransitionandfavorsanoxidativephenotypeofskeletalmuscle AT mosterika carnitinesupplementationtoobesezuckerratspreventsobesityinducedtypeiitotypeimusclefibertransitionandfavorsanoxidativephenotypeofskeletalmuscle AT ederklaus carnitinesupplementationtoobesezuckerratspreventsobesityinducedtypeiitotypeimusclefibertransitionandfavorsanoxidativephenotypeofskeletalmuscle |