Cargando…

Comparative computational analysis of ADP Glucose Pyrophosphorylase in plants

ADP-glucose pyrophosphorylase (AGPase), a key enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Ample evidence has shown that the AGPase catalyzes the rate limiting step in starch biosynthesis in higher plants. In this study, we compiled...

Descripción completa

Detalles Bibliográficos
Autores principales: Rani, Saroj, Sharma, Pradeep, Sharma, Anil, Chatrath, Ravish
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717185/
https://www.ncbi.nlm.nih.gov/pubmed/23888098
http://dx.doi.org/10.6026/97320630009572
Descripción
Sumario:ADP-glucose pyrophosphorylase (AGPase), a key enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Ample evidence has shown that the AGPase catalyzes the rate limiting step in starch biosynthesis in higher plants. In this study, we compiled detailed comparative information about ADP glucose pyrophosphorylase in selected plants by analyzing their structural features e.g. amino acid content, physico-chemical properties, secondary structural features and phylogenetic classification. Functional analysis of these proteins includes identification of important 10 to 20 amino acids long motifs arise because specific residues and regions proved to be important for the biological function of a group of proteins, which are conserved in both structure and sequence during evolution. Phylogenetic analysis depicts two main clusters. Cluster I encompasses large subunits (LS) while cluster II contains small subunits (SS).