Cargando…

Individual participant data meta-analyses should not ignore clustering

OBJECTIVES: Individual participant data (IPD) meta-analyses often analyze their IPD as if coming from a single study. We compare this approach with analyses that rather account for clustering of patients within studies. STUDY DESIGN AND SETTING: Comparison of effect estimates from logistic regressio...

Descripción completa

Detalles Bibliográficos
Autores principales: Abo-Zaid, Ghada, Guo, Boliang, Deeks, Jonathan J., Debray, Thomas P.A., Steyerberg, Ewout W., Moons, Karel G.M., Riley, Richard David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717206/
https://www.ncbi.nlm.nih.gov/pubmed/23651765
http://dx.doi.org/10.1016/j.jclinepi.2012.12.017
_version_ 1782277677632192512
author Abo-Zaid, Ghada
Guo, Boliang
Deeks, Jonathan J.
Debray, Thomas P.A.
Steyerberg, Ewout W.
Moons, Karel G.M.
Riley, Richard David
author_facet Abo-Zaid, Ghada
Guo, Boliang
Deeks, Jonathan J.
Debray, Thomas P.A.
Steyerberg, Ewout W.
Moons, Karel G.M.
Riley, Richard David
author_sort Abo-Zaid, Ghada
collection PubMed
description OBJECTIVES: Individual participant data (IPD) meta-analyses often analyze their IPD as if coming from a single study. We compare this approach with analyses that rather account for clustering of patients within studies. STUDY DESIGN AND SETTING: Comparison of effect estimates from logistic regression models in real and simulated examples. RESULTS: The estimated prognostic effect of age in patients with traumatic brain injury is similar, regardless of whether clustering is accounted for. However, a family history of thrombophilia is found to be a diagnostic marker of deep vein thrombosis [odds ratio, 1.30; 95% confidence interval (CI): 1.00, 1.70; P = 0.05] when clustering is accounted for but not when it is ignored (odds ratio, 1.06; 95% CI: 0.83, 1.37; P = 0.64). Similarly, the treatment effect of nicotine gum on smoking cessation is severely attenuated when clustering is ignored (odds ratio, 1.40; 95% CI: 1.02, 1.92) rather than accounted for (odds ratio, 1.80; 95% CI: 1.29, 2.52). Simulations show models accounting for clustering perform consistently well, but downwardly biased effect estimates and low coverage can occur when ignoring clustering. CONCLUSION: Researchers must routinely account for clustering in IPD meta-analyses; otherwise, misleading effect estimates and conclusions may arise.
format Online
Article
Text
id pubmed-3717206
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-37172062013-08-01 Individual participant data meta-analyses should not ignore clustering Abo-Zaid, Ghada Guo, Boliang Deeks, Jonathan J. Debray, Thomas P.A. Steyerberg, Ewout W. Moons, Karel G.M. Riley, Richard David J Clin Epidemiol Original Article OBJECTIVES: Individual participant data (IPD) meta-analyses often analyze their IPD as if coming from a single study. We compare this approach with analyses that rather account for clustering of patients within studies. STUDY DESIGN AND SETTING: Comparison of effect estimates from logistic regression models in real and simulated examples. RESULTS: The estimated prognostic effect of age in patients with traumatic brain injury is similar, regardless of whether clustering is accounted for. However, a family history of thrombophilia is found to be a diagnostic marker of deep vein thrombosis [odds ratio, 1.30; 95% confidence interval (CI): 1.00, 1.70; P = 0.05] when clustering is accounted for but not when it is ignored (odds ratio, 1.06; 95% CI: 0.83, 1.37; P = 0.64). Similarly, the treatment effect of nicotine gum on smoking cessation is severely attenuated when clustering is ignored (odds ratio, 1.40; 95% CI: 1.02, 1.92) rather than accounted for (odds ratio, 1.80; 95% CI: 1.29, 2.52). Simulations show models accounting for clustering perform consistently well, but downwardly biased effect estimates and low coverage can occur when ignoring clustering. CONCLUSION: Researchers must routinely account for clustering in IPD meta-analyses; otherwise, misleading effect estimates and conclusions may arise. Elsevier 2013-08 /pmc/articles/PMC3717206/ /pubmed/23651765 http://dx.doi.org/10.1016/j.jclinepi.2012.12.017 Text en © 2013 Elsevier Inc. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Original Article
Abo-Zaid, Ghada
Guo, Boliang
Deeks, Jonathan J.
Debray, Thomas P.A.
Steyerberg, Ewout W.
Moons, Karel G.M.
Riley, Richard David
Individual participant data meta-analyses should not ignore clustering
title Individual participant data meta-analyses should not ignore clustering
title_full Individual participant data meta-analyses should not ignore clustering
title_fullStr Individual participant data meta-analyses should not ignore clustering
title_full_unstemmed Individual participant data meta-analyses should not ignore clustering
title_short Individual participant data meta-analyses should not ignore clustering
title_sort individual participant data meta-analyses should not ignore clustering
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717206/
https://www.ncbi.nlm.nih.gov/pubmed/23651765
http://dx.doi.org/10.1016/j.jclinepi.2012.12.017
work_keys_str_mv AT abozaidghada individualparticipantdatametaanalysesshouldnotignoreclustering
AT guoboliang individualparticipantdatametaanalysesshouldnotignoreclustering
AT deeksjonathanj individualparticipantdatametaanalysesshouldnotignoreclustering
AT debraythomaspa individualparticipantdatametaanalysesshouldnotignoreclustering
AT steyerbergewoutw individualparticipantdatametaanalysesshouldnotignoreclustering
AT moonskarelgm individualparticipantdatametaanalysesshouldnotignoreclustering
AT rileyricharddavid individualparticipantdatametaanalysesshouldnotignoreclustering