Cargando…
Sparse logistic regression with a L(1/2) penalty for gene selection in cancer classification
BACKGROUND: Microarray technology is widely used in cancer diagnosis. Successfully identifying gene biomarkers will significantly help to classify different cancer types and improve the prediction accuracy. The regularization approach is one of the effective methods for gene selection in microarray...
Autores principales: | Liang, Yong, Liu, Cheng, Luan, Xin-Ze, Leung, Kwong-Sak, Chan, Tak-Ming, Xu, Zong-Ben, Zhang, Hai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718705/ https://www.ncbi.nlm.nih.gov/pubmed/23777239 http://dx.doi.org/10.1186/1471-2105-14-198 |
Ejemplares similares
-
Sparse Logistic Regression With L(1/2) Penalty for Emotion Recognition in Electroencephalography Classification
por: Chen, Dong-Wei, et al.
Publicado: (2020) -
Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L(1/2 +2) Regularization
por: Huang, Hai-Hui, et al.
Publicado: (2016) -
Leukemia Prediction Using Sparse Logistic Regression
por: Manninen, Tapio, et al.
Publicado: (2013) -
Sparse Ordinal Logistic Regression and Its Application to Brain Decoding
por: Satake, Emi, et al.
Publicado: (2018) -
An Inexact Penalty Decomposition Method for Sparse Optimization
por: Dong, Zhengshan, et al.
Publicado: (2021)