Cargando…
Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles
A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO(2) and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO(2) nanoparticles were found to be non-toxic where...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718780/ https://www.ncbi.nlm.nih.gov/pubmed/23894303 http://dx.doi.org/10.1371/journal.pone.0068415 |
_version_ | 1782277820458729472 |
---|---|
author | Tuomela, Soile Autio, Reija Buerki-Thurnherr, Tina Arslan, Osman Kunzmann, Andrea Andersson-Willman, Britta Wick, Peter Mathur, Sanjay Scheynius, Annika Krug, Harald F. Fadeel, Bengt Lahesmaa, Riitta |
author_facet | Tuomela, Soile Autio, Reija Buerki-Thurnherr, Tina Arslan, Osman Kunzmann, Andrea Andersson-Willman, Britta Wick, Peter Mathur, Sanjay Scheynius, Annika Krug, Harald F. Fadeel, Bengt Lahesmaa, Riitta |
author_sort | Tuomela, Soile |
collection | PubMed |
description | A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO(2) and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO(2) nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach. |
format | Online Article Text |
id | pubmed-3718780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37187802013-07-26 Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles Tuomela, Soile Autio, Reija Buerki-Thurnherr, Tina Arslan, Osman Kunzmann, Andrea Andersson-Willman, Britta Wick, Peter Mathur, Sanjay Scheynius, Annika Krug, Harald F. Fadeel, Bengt Lahesmaa, Riitta PLoS One Research Article A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO(2) and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO(2) nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach. Public Library of Science 2013-07-22 /pmc/articles/PMC3718780/ /pubmed/23894303 http://dx.doi.org/10.1371/journal.pone.0068415 Text en © 2013 Tuomela et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Tuomela, Soile Autio, Reija Buerki-Thurnherr, Tina Arslan, Osman Kunzmann, Andrea Andersson-Willman, Britta Wick, Peter Mathur, Sanjay Scheynius, Annika Krug, Harald F. Fadeel, Bengt Lahesmaa, Riitta Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles |
title | Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles |
title_full | Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles |
title_fullStr | Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles |
title_full_unstemmed | Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles |
title_short | Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles |
title_sort | gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718780/ https://www.ncbi.nlm.nih.gov/pubmed/23894303 http://dx.doi.org/10.1371/journal.pone.0068415 |
work_keys_str_mv | AT tuomelasoile geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT autioreija geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT buerkithurnherrtina geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT arslanosman geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT kunzmannandrea geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT anderssonwillmanbritta geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT wickpeter geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT mathursanjay geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT scheyniusannika geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT krugharaldf geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT fadeelbengt geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles AT lahesmaariitta geneexpressionprofilingofimmunecompetenthumancellsexposedtoengineeredzincoxideortitaniumdioxidenanoparticles |