Cargando…

Cd-Induced Apoptosis through the Mitochondrial Pathway in the Hepatopancreas of the Freshwater Crab Sinopotamon henanense

Cd is one of the most common pollutants in the environment that also induces the apoptosis. To explore the mechanism of apoptosis in the hepatopancreas, freshwater crab S . henanense were treated with 0, 3.56, 7.12, 14.25, 28.49 and 56.98 mg/L Cd for 72 h. Apoptosis was noticeable in every treatment...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Dongmei, Yang, Jian, Li, Yingjun, Zhang, Meng, Wang, Lan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718824/
https://www.ncbi.nlm.nih.gov/pubmed/23894343
http://dx.doi.org/10.1371/journal.pone.0068770
Descripción
Sumario:Cd is one of the most common pollutants in the environment that also induces the apoptosis. To explore the mechanism of apoptosis in the hepatopancreas, freshwater crab S . henanense were treated with 0, 3.56, 7.12, 14.25, 28.49 and 56.98 mg/L Cd for 72 h. Apoptosis was noticeable in every treatment group and necrosis was observed clearly in the high concentration Cd groups. Classical apoptotic bodies were found by transmission electronic microscopy, which revealed chromatin condensation under nuclear membrane and mitochondrial membrane rupture. An increasing number of autolysosomes, damaged rough endoplamic reticulum and Golgi complex were observed as the Cd concentration increase. Brown colored apoptotic cells were detected by the TUNEL test in all Cd-treatment groups. The apoptosis index increased following the elevation of Cd concentration and got 32.9% in the highest Cd group. Caspase-9 and caspase-3 activities increased in the lower Cd treatment groups but no changes in the higher Cd concentration groups (comparing to the control group). The activity of caspase-8 did not change significantly. No significant change in the content of mitochondrial cytochrome c (cyt c) in Cd exposed groups except the decrease in the 56.98 mg/L group. In crabs treated with 3.56, 7.12 and 14.25 mg/L Cd, hyperpolarization of mitochondrial membrane potential (Δψ (m)) significantly increased. These results implied that apoptosis in the hepatopancreas induced by Cd occurrs through the mitochondrial caspase-dependent pathway. However, whether there are other apoptotic pathways needs to be studied further.