Cargando…

Kinesin-1–syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport

Axonal mitochondria are recruited to synaptic terminals in response to neuronal activity, but the mechanisms underlying activity-dependent regulation of mitochondrial transport are largely unknown. In this paper, using genetic mouse model combined with live imaging, we demonstrate that syntaphilin (...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yanmin, Sheng, Zu-Hang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718985/
https://www.ncbi.nlm.nih.gov/pubmed/23857772
http://dx.doi.org/10.1083/jcb.201302040
Descripción
Sumario:Axonal mitochondria are recruited to synaptic terminals in response to neuronal activity, but the mechanisms underlying activity-dependent regulation of mitochondrial transport are largely unknown. In this paper, using genetic mouse model combined with live imaging, we demonstrate that syntaphilin (SNPH) mediates the activity-dependent immobilization of axonal mitochondria through binding to KIF5. In vitro analysis showed that the KIF5–SNPH coupling inhibited the motor adenosine triphosphatase. Neuronal activity further recruited SNPH to axonal mitochondria. This motor-docking interplay was induced by Ca(2+) and synaptic activity and was necessary to establish an appropriate balance between motile and stationary axonal mitochondria. Deleting snph abolished the activity-dependent immobilization of axonal mitochondria. We propose an “Engine-Switch and Brake” model, in which SNPH acts both as an engine off switch by sensing mitochondrial Rho guanosine triphosphatase-Ca(2+) and as a brake by anchoring mitochondria to the microtubule track. Altogether, our study provides new mechanistic insight into the molecular interplay between motor and docking proteins, which arrests axonal mitochondrial transport in response to changes in neuronal activity.