Cargando…

Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts

We have fabricated the vertically aligned coaxial or longitudinal heterostructure GaN/InGaN nanowires. The GaN nanowires are first vertically grown by vapor–liquid-solid mechanism using Au/Ni bi-metal catalysts. The GaN nanowires are single crystal grown in the [0001] direction, with a length and di...

Descripción completa

Detalles Bibliográficos
Autores principales: Ha, Ryong, Kim, Sung-Wook, Choi, Heon-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720202/
https://www.ncbi.nlm.nih.gov/pubmed/23803283
http://dx.doi.org/10.1186/1556-276X-8-299
Descripción
Sumario:We have fabricated the vertically aligned coaxial or longitudinal heterostructure GaN/InGaN nanowires. The GaN nanowires are first vertically grown by vapor–liquid-solid mechanism using Au/Ni bi-metal catalysts. The GaN nanowires are single crystal grown in the [0001] direction, with a length and diameter of 1 to 10 μm and 100 nm, respectively. The vertical GaN/InGaN coaxial heterostructure nanowires (COHN) are then fabricated by the subsequent deposition of 2 nm of In(x)Ga(1-x)N shell on the surface of GaN nanowires. The vertical GaN/InGaN longitudinal heterostructure nanowires (LOHN) are also fabricated by subsequent growth of an InGaN layer on the vertically aligned GaN nanowires using the catalyst. The photoluminescence from the COHN and LOHN indicates that the optical properties of GaN nanowires can be tuned by the formation of a coaxial or longitudinal InGaN layer. Our study demonstrates that the bi-metal catalysts are useful for growing vertical as well as heterostructure GaN nanowires. These vertically aligned GaN/InGaN heterostructure nanowires may be useful for the development of high-performance optoelectronic devices.