Cargando…
A big data approach to the ultra-fast prediction of DFT-calculated bond energies
BACKGROUND: The rapid access to intrinsic physicochemical properties of molecules is highly desired for large scale chemical data mining explorations such as mass spectrum prediction in metabolomics, toxicity risk assessment and drug discovery. Large volumes of data are being produced by quantum che...
Autores principales: | Qu, Xiaohui, Latino, Diogo ARS, Aires-de-Sousa, Joao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720218/ https://www.ncbi.nlm.nih.gov/pubmed/23849655 http://dx.doi.org/10.1186/1758-2946-5-34 |
Ejemplares similares
-
Machine Learning to Predict Homolytic Dissociation Energies of C−H Bonds: Calibration of DFT‐based Models with Experimental Data
por: Li, Wanli, et al.
Publicado: (2022) -
Fast calculation of hydrogen-bond strengths and free energy of hydration of small molecules
por: Ghiandoni, Gian Marco, et al.
Publicado: (2023) -
Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions
por: Latino, Diogo A. R. S., et al.
Publicado: (2014) -
Intramolecular Hydrogen Bonding Involving Organic Fluorine: NMR Investigations Corroborated by DFT-Based Theoretical Calculations
por: Kumar Mishra, Sandeep, et al.
Publicado: (2017) -
Germanium Complexes with ONO Tridentate Ligands: O-H Bond Activation Control According to DFT Calculations
por: Zaitsev, Kirill V., et al.
Publicado: (2023)