Cargando…
Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease
Parkinson’s disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720533/ https://www.ncbi.nlm.nih.gov/pubmed/23935941 http://dx.doi.org/10.1371/journal.pone.0069146 |
_version_ | 1782277955695673344 |
---|---|
author | Poliquin, Pierre O. Chen, Jingkui Cloutier, Mathieu Trudeau, Louis-Éric Jolicoeur, Mario |
author_facet | Poliquin, Pierre O. Chen, Jingkui Cloutier, Mathieu Trudeau, Louis-Éric Jolicoeur, Mario |
author_sort | Poliquin, Pierre O. |
collection | PubMed |
description | Parkinson’s disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a complex I blocker. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level. |
format | Online Article Text |
id | pubmed-3720533 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37205332013-08-09 Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease Poliquin, Pierre O. Chen, Jingkui Cloutier, Mathieu Trudeau, Louis-Éric Jolicoeur, Mario PLoS One Research Article Parkinson’s disease (PD) is a multifactorial disease known to result from a variety of factors. Although age is the principal risk factor, other etiological mechanisms have been identified, including gene mutations and exposure to toxins. Deregulation of energy metabolism, mostly through the loss of complex I efficiency, is involved in disease progression in both the genetic and sporadic forms of the disease. In this study, we investigated energy deregulation in the cerebral tissue of animal models (genetic and toxin induced) of PD using an approach that combines metabolomics and mathematical modelling. In a first step, quantitative measurements of energy-related metabolites in mouse brain slices revealed most affected pathways. A genetic model of PD, the Park2 knockout, was compared to the effect of CCCP, a complex I blocker. Model simulated and experimental results revealed a significant and sustained decrease in ATP after CCCP exposure, but not in the genetic mice model. In support to data analysis, a mathematical model of the relevant metabolic pathways was developed and calibrated onto experimental data. In this work, we show that a short-term stress response in nucleotide scavenging is most probably induced by the toxin exposure. In turn, the robustness of energy-related pathways in the model explains how genetic perturbations, at least in young animals, are not sufficient to induce significant changes at the metabolite level. Public Library of Science 2013-07-23 /pmc/articles/PMC3720533/ /pubmed/23935941 http://dx.doi.org/10.1371/journal.pone.0069146 Text en © 2013 Poliquin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Poliquin, Pierre O. Chen, Jingkui Cloutier, Mathieu Trudeau, Louis-Éric Jolicoeur, Mario Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease |
title | Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease |
title_full | Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease |
title_fullStr | Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease |
title_full_unstemmed | Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease |
title_short | Metabolomics and In-Silico Analysis Reveal Critical Energy Deregulations in Animal Models of Parkinson’s Disease |
title_sort | metabolomics and in-silico analysis reveal critical energy deregulations in animal models of parkinson’s disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720533/ https://www.ncbi.nlm.nih.gov/pubmed/23935941 http://dx.doi.org/10.1371/journal.pone.0069146 |
work_keys_str_mv | AT poliquinpierreo metabolomicsandinsilicoanalysisrevealcriticalenergyderegulationsinanimalmodelsofparkinsonsdisease AT chenjingkui metabolomicsandinsilicoanalysisrevealcriticalenergyderegulationsinanimalmodelsofparkinsonsdisease AT cloutiermathieu metabolomicsandinsilicoanalysisrevealcriticalenergyderegulationsinanimalmodelsofparkinsonsdisease AT trudeaulouiseric metabolomicsandinsilicoanalysisrevealcriticalenergyderegulationsinanimalmodelsofparkinsonsdisease AT jolicoeurmario metabolomicsandinsilicoanalysisrevealcriticalenergyderegulationsinanimalmodelsofparkinsonsdisease |