Cargando…
The Effect of Hypothermia Therapy on Cortical Laminar Disruption following Ischemic Injury in Neonatal Mice
Hypothermia has been proposed as a treatment for reducing neuronal damage in the brain induced by hypoxic ischemia. In the developing brain, hypoxic ischemia-induced injury may give rise to cerebral palsy (CP). However, it is unknown whether hypothermia might affect the development of CP. The purpos...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720877/ https://www.ncbi.nlm.nih.gov/pubmed/23894362 http://dx.doi.org/10.1371/journal.pone.0068877 |
Sumario: | Hypothermia has been proposed as a treatment for reducing neuronal damage in the brain induced by hypoxic ischemia. In the developing brain, hypoxic ischemia-induced injury may give rise to cerebral palsy (CP). However, it is unknown whether hypothermia might affect the development of CP. The purpose of this study was to investigate whether hypothermia would have a protective effect on the brains of immature, 3-day old (P3) mice after a challenge of cerebral ischemia. Cerebral ischemia was induced in P3 mice with a right common carotid artery ligation followed by hypoxia (6% O(2), 37°C) for 30 min. Immediately after hypoxic ischemia, mice were exposed to hypothermia (32°C) or normothermia (37°C) for 24 h. At 4 weeks of age, mouse motor development was tested in a behavioral test. Mice were sacrificed at P4, P7, and 5 weeks to examine brain morphology. The laminar structure of the cortex was examined with immunohistochemistry (Cux1/Ctip2); the number of neurons was counted; and the expression of myelin basic protein (MBP) was determined. The hypothermia treatment was associated with improved neurological outcomes in the behavioral test. In the normothermia group, histological analyses indicated reduced numbers of neurons, reduced cortical laminar thickness in the deep, ischemic cortical layers, and significant reduction in MBP expression in the ischemic cortex compared to the contralateral cortex. In the hypothermia group, no reductions were noted in deep cortical layer thickness and in MBP expression in the ischemic cortex compared to the contralateral cortex. At 24 h after the hypothermia treatment prevented the neuronal cell death that had predominantly occurred in the ischemic cortical deep layers with normothermia treatment. Our findings may provide a preclinical basis for testing hypothermal therapies in patients with CP induced by hypoxic ischemia in the preterm period. |
---|