Cargando…

Effect of Astaxanthin on Human Sperm Capacitation

In order to be able to fertilize oocytes, human sperm must undergo a series of morphological and structural alterations, known as capacitation. It has been shown that the production of endogenous sperm reactive oxygen species (ROS) plays a key role in causing cells to undergo a massive acrosome reac...

Descripción completa

Detalles Bibliográficos
Autores principales: Donà, Gabriella, Kožuh, Ivana, Brunati, Anna Maria, Andrisani, Alessandra, Ambrosini, Guido, Bonanni, Guglielmo, Ragazzi, Eugenio, Armanini, Decio, Clari, Giulio, Bordin, Luciana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721213/
https://www.ncbi.nlm.nih.gov/pubmed/23736766
http://dx.doi.org/10.3390/md11061909
Descripción
Sumario:In order to be able to fertilize oocytes, human sperm must undergo a series of morphological and structural alterations, known as capacitation. It has been shown that the production of endogenous sperm reactive oxygen species (ROS) plays a key role in causing cells to undergo a massive acrosome reaction (AR). Astaxanthin (Asta), a photo-protective red pigment belonging to the carotenoid family, is recognized as having anti-oxidant, anti-cancer, anti-diabetic and anti-inflammatory properties and is present in many dietary supplements. This study evaluates the effect of Asta in a capacitating buffer which induces low ROS production and low percentages of acrosome-reacted cells (ARC). Sperm cells were incubated in the presence or absence of increasing concentrations of Asta or diamide (Diam) and analyzed for their ROS production, Tyr-phosphorylation (Tyr-P) pattern and percentages of ARC and non-viable cells (NVC). Results show that Asta ameliorated both sperm head Tyr-P and ARC values without affecting the ROS generation curve, whereas Diam succeeded in enhancing the Tyr-P level but only of the flagellum without increasing ARC values. It is suggested that Asta can be inserted in the membrane and therefore create capacitation-like membrane alteration which allow Tyr-P of the head. Once this has occurred, AR can take place and involves a higher numbers of cells.