Cargando…

Amlodipine attenuates oxidative stress in the heart and blood of high-cholesterol diet rabbits

INTRODUCTION: Oxidative stress is a key component of atherosclerosis. It has been suggested that amlodipine inhibits oxidative stress. In this study, we evaluated the effects of amlodipine on the total antioxidant capacity of heart tissue and blood in 36 control and cholesterol-fed male New Zealand...

Descripción completa

Detalles Bibliográficos
Autores principales: Salehi, I, Mohammadi, M, Mirzaei, F, Soufi, FG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Clinics Cardive Publishing 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721824/
https://www.ncbi.nlm.nih.gov/pubmed/22331246
http://dx.doi.org/10.5830/CVJA-2010-091
Descripción
Sumario:INTRODUCTION: Oxidative stress is a key component of atherosclerosis. It has been suggested that amlodipine inhibits oxidative stress. In this study, we evaluated the effects of amlodipine on the total antioxidant capacity of heart tissue and blood in 36 control and cholesterol-fed male New Zealand white rabbits. METHODS: The rabbits were divided into four groups (n = 9). Group 1 rabbits were fed a regular diet, group 2 were fed a diet with 2% cholesterol, group 3 were fed a regular diet plus 5 mg/kg/day oral amlodipine, and group 4 were fed 2% cholesterol diet plus amlodipine 5 mg/kg/day. At the end of eight weeks, blood samples were drawn and at the same time heart tissue was isolated and frozen in liquid nitrogen. After homogenisation, the solution was centrifuged and the light supernatant was stored at –80˚C. This was used for determination of glutathione peroxidase (GPX), superoxide dismutase (SOD) and (MDA) levels. RESULTS: Eight weeks of amlodipine treatment significantly reduced the levels of total cholesterol, low-density lipoprotein cholesterol and triglycerides in the group on the hypercholesterolaemic diet (p < 0.05). In the blood, the level of thiobarbituric acid-reactive substances increased in the rabbits on the 2% cholesterol diet (group 2) and 2% cholesterol-plusamlodipine diet (group 4) and decreased in the amlodipineonly group (group 3) (p < 0.05). Lipid peroxidation in the heart tissue was similar to that in the blood, except in the amlodipine-only group (group 3). In the blood, the activity of total SOD (tSOD) decreased in the group on the 2% cholesterol diet (group 2) (p < 0.05) and markedly increased in the amlodipine-only (group 3) and 2% cholesterol-plusamlodipine groups (group 4) (p < 0.05). CONCLUSION: Amlodipine decreased oxidative stress in the heart and blood and improved the lipid profile in cholesterolfed rabbits. Therefore, it may be considered a useful tool for the reduction of oxidative stress and improvement of lipid profiles in diseases related to atherosclerosis.