Cargando…

Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome

BACKGROUND: Copy number variation (CNV), an important source of diversity in genomic structure, is frequently found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but the composition of these complex repetitive structures remains unclear. RES...

Descripción completa

Detalles Bibliográficos
Autores principales: Umemori, Juzoh, Mori, Akihiro, Ichiyanagi, Kenji, Uno, Takeaki, Koide, Tsuyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722088/
https://www.ncbi.nlm.nih.gov/pubmed/23834397
http://dx.doi.org/10.1186/1471-2164-14-455
_version_ 1782278137228296192
author Umemori, Juzoh
Mori, Akihiro
Ichiyanagi, Kenji
Uno, Takeaki
Koide, Tsuyoshi
author_facet Umemori, Juzoh
Mori, Akihiro
Ichiyanagi, Kenji
Uno, Takeaki
Koide, Tsuyoshi
author_sort Umemori, Juzoh
collection PubMed
description BACKGROUND: Copy number variation (CNV), an important source of diversity in genomic structure, is frequently found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but the composition of these complex repetitive structures remains unclear. RESULTS: We conducted self-comparative-plot analysis of all mouse chromosomes using the high-speed and large-scale-homology search algorithm SHEAP. For eight chromosomes, we identified various types of large SD as tartan-checked patterns within the self-comparative plots. A complex arrangement of diagonal split lines in the self-comparative-plots indicated the presence of large homologous repetitive sequences. We focused on one SD on chromosome 13 (SD13M), and developed SHEPHERD, a stepwise ab initio method, to extract longer repetitive elements and to characterize repetitive structures in this region. Analysis using SHEPHERD showed the existence of 60 core elements, which were expected to be the basic units that form SDs within the repetitive structure of SD13M. The demonstration that sequences homologous to the core elements (>70% homology) covered approximately 90% of the SD13M region indicated that our method can characterize the repetitive structure of SD13M effectively. Core elements were composed largely of fragmented repeats of a previously identified type, such as long interspersed nuclear elements (LINEs), together with partial genic regions. Comparative genome hybridization array analysis showed that whereas 42 core elements were components of CNVR that varied among mouse strains, 8 did not vary among strains (constant type), and the status of the others could not be determined. The CNV-type core elements contained significantly larger proportions of long terminal repeat (LTR) types of retrotransposon than the constant-type core elements, which had no CNV. The higher divergence rates observed in the CNV-type core elements than in the constant type indicate that the CNV-type core elements have a longer evolutionary history than constant-type core elements in SD13M. CONCLUSIONS: Our methodology for the identification of repetitive core sequences simplifies characterization of the structures of large SDs and detailed analysis of CNV. The results of detailed structural and quantitative analyses in this study might help to elucidate the biological role of one of the SDs on chromosome 13.
format Online
Article
Text
id pubmed-3722088
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-37220882013-07-25 Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome Umemori, Juzoh Mori, Akihiro Ichiyanagi, Kenji Uno, Takeaki Koide, Tsuyoshi BMC Genomics Research Article BACKGROUND: Copy number variation (CNV), an important source of diversity in genomic structure, is frequently found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but the composition of these complex repetitive structures remains unclear. RESULTS: We conducted self-comparative-plot analysis of all mouse chromosomes using the high-speed and large-scale-homology search algorithm SHEAP. For eight chromosomes, we identified various types of large SD as tartan-checked patterns within the self-comparative plots. A complex arrangement of diagonal split lines in the self-comparative-plots indicated the presence of large homologous repetitive sequences. We focused on one SD on chromosome 13 (SD13M), and developed SHEPHERD, a stepwise ab initio method, to extract longer repetitive elements and to characterize repetitive structures in this region. Analysis using SHEPHERD showed the existence of 60 core elements, which were expected to be the basic units that form SDs within the repetitive structure of SD13M. The demonstration that sequences homologous to the core elements (>70% homology) covered approximately 90% of the SD13M region indicated that our method can characterize the repetitive structure of SD13M effectively. Core elements were composed largely of fragmented repeats of a previously identified type, such as long interspersed nuclear elements (LINEs), together with partial genic regions. Comparative genome hybridization array analysis showed that whereas 42 core elements were components of CNVR that varied among mouse strains, 8 did not vary among strains (constant type), and the status of the others could not be determined. The CNV-type core elements contained significantly larger proportions of long terminal repeat (LTR) types of retrotransposon than the constant-type core elements, which had no CNV. The higher divergence rates observed in the CNV-type core elements than in the constant type indicate that the CNV-type core elements have a longer evolutionary history than constant-type core elements in SD13M. CONCLUSIONS: Our methodology for the identification of repetitive core sequences simplifies characterization of the structures of large SDs and detailed analysis of CNV. The results of detailed structural and quantitative analyses in this study might help to elucidate the biological role of one of the SDs on chromosome 13. BioMed Central 2013-07-08 /pmc/articles/PMC3722088/ /pubmed/23834397 http://dx.doi.org/10.1186/1471-2164-14-455 Text en Copyright © 2013 Umemori et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Umemori, Juzoh
Mori, Akihiro
Ichiyanagi, Kenji
Uno, Takeaki
Koide, Tsuyoshi
Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome
title Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome
title_full Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome
title_fullStr Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome
title_full_unstemmed Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome
title_short Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome
title_sort identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722088/
https://www.ncbi.nlm.nih.gov/pubmed/23834397
http://dx.doi.org/10.1186/1471-2164-14-455
work_keys_str_mv AT umemorijuzoh identificationofbothcopynumbervariationtypeandconstanttypecoreelementsinalargesegmentalduplicationregionofthemousegenome
AT moriakihiro identificationofbothcopynumbervariationtypeandconstanttypecoreelementsinalargesegmentalduplicationregionofthemousegenome
AT ichiyanagikenji identificationofbothcopynumbervariationtypeandconstanttypecoreelementsinalargesegmentalduplicationregionofthemousegenome
AT unotakeaki identificationofbothcopynumbervariationtypeandconstanttypecoreelementsinalargesegmentalduplicationregionofthemousegenome
AT koidetsuyoshi identificationofbothcopynumbervariationtypeandconstanttypecoreelementsinalargesegmentalduplicationregionofthemousegenome