Cargando…

Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements

We investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time points within the time up to 60 min. A model for the sed...

Descripción completa

Detalles Bibliográficos
Autores principales: Terzi, Erol, Cengiz, Mehmet Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722845/
https://www.ncbi.nlm.nih.gov/pubmed/23935702
http://dx.doi.org/10.1155/2013/579214
Descripción
Sumario:We investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time points within the time up to 60 min. A model for the sedation level of patients is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response, and then subsequent terms are introduced. To estimate the model, we use the Gibbs sampling given some appropriate prior distributions.