Cargando…
Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements
We investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time points within the time up to 60 min. A model for the sed...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722845/ https://www.ncbi.nlm.nih.gov/pubmed/23935702 http://dx.doi.org/10.1155/2013/579214 |
_version_ | 1782278235451555840 |
---|---|
author | Terzi, Erol Cengiz, Mehmet Ali |
author_facet | Terzi, Erol Cengiz, Mehmet Ali |
author_sort | Terzi, Erol |
collection | PubMed |
description | We investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time points within the time up to 60 min. A model for the sedation level of patients is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response, and then subsequent terms are introduced. To estimate the model, we use the Gibbs sampling given some appropriate prior distributions. |
format | Online Article Text |
id | pubmed-3722845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-37228452013-08-09 Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements Terzi, Erol Cengiz, Mehmet Ali Comput Math Methods Med Research Article We investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time points within the time up to 60 min. A model for the sedation level of patients is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response, and then subsequent terms are introduced. To estimate the model, we use the Gibbs sampling given some appropriate prior distributions. Hindawi Publishing Corporation 2013 2013-07-10 /pmc/articles/PMC3722845/ /pubmed/23935702 http://dx.doi.org/10.1155/2013/579214 Text en Copyright © 2013 E. Terzi and M. A. Cengiz. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Terzi, Erol Cengiz, Mehmet Ali Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements |
title | Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements |
title_full | Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements |
title_fullStr | Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements |
title_full_unstemmed | Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements |
title_short | Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements |
title_sort | bayesian hierarchical modeling for categorical longitudinal data from sedation measurements |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722845/ https://www.ncbi.nlm.nih.gov/pubmed/23935702 http://dx.doi.org/10.1155/2013/579214 |
work_keys_str_mv | AT terzierol bayesianhierarchicalmodelingforcategoricallongitudinaldatafromsedationmeasurements AT cengizmehmetali bayesianhierarchicalmodelingforcategoricallongitudinaldatafromsedationmeasurements |