Cargando…

Efficient Partitioning of Memory Systems and Its Importance for Memory Consolidation

Long-term memories are likely stored in the synaptic weights of neuronal networks in the brain. The storage capacity of such networks depends on the degree of plasticity of their synapses. Highly plastic synapses allow for strong memories, but these are quickly overwritten. On the other hand, less l...

Descripción completa

Detalles Bibliográficos
Autores principales: Roxin, Alex, Fusi, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723499/
https://www.ncbi.nlm.nih.gov/pubmed/23935470
http://dx.doi.org/10.1371/journal.pcbi.1003146
Descripción
Sumario:Long-term memories are likely stored in the synaptic weights of neuronal networks in the brain. The storage capacity of such networks depends on the degree of plasticity of their synapses. Highly plastic synapses allow for strong memories, but these are quickly overwritten. On the other hand, less labile synapses result in long-lasting but weak memories. Here we show that the trade-off between memory strength and memory lifetime can be overcome by partitioning the memory system into multiple regions characterized by different levels of synaptic plasticity and transferring memory information from the more to less plastic region. The improvement in memory lifetime is proportional to the number of memory regions, and the initial memory strength can be orders of magnitude larger than in a non-partitioned memory system. This model provides a fundamental computational reason for memory consolidation processes at the systems level.