Cargando…
Multi-study Integration of Brain Cancer Transcriptomes Reveals Organ-Level Molecular Signatures
We utilized abundant transcriptomic data for the primary classes of brain cancers to study the feasibility of separating all of these diseases simultaneously based on molecular data alone. These signatures were based on a new method reported herein – Identification of Structured Signatures and Class...
Autores principales: | Sung, Jaeyun, Kim, Pan-Jun, Ma, Shuyi, Funk, Cory C., Magis, Andrew T., Wang, Yuliang, Hood, Leroy, Geman, Donald, Price, Nathan D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723500/ https://www.ncbi.nlm.nih.gov/pubmed/23935471 http://dx.doi.org/10.1371/journal.pcbi.1003148 |
Ejemplares similares
-
Measuring the Effect of Inter-Study Variability on Estimating Prediction Error
por: Ma, Shuyi, et al.
Publicado: (2014) -
Identifying Tightly Regulated and Variably Expressed Networks by Differential Rank Conservation (DIRAC)
por: Eddy, James A., et al.
Publicado: (2010) -
Molecular signatures from omics data: From chaos to consensus
por: Sung, Jaeyun, et al.
Publicado: (2012) -
AUREA: an open-source software system for accurate and user-friendly identification of relative expression molecular signatures
por: Earls, John C, et al.
Publicado: (2013) -
Large-scale integration of cancer microarray data identifies a robust common cancer signature
por: Xu, Lei, et al.
Publicado: (2007)