Cargando…
A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems
Error-driven learning rules have received considerable attention because of their close relationships to both optimal theory and neurobiological mechanisms. However, basic forms of these rules are effective under only a restricted set of conditions in which the environment is stable. Recent studies...
Autores principales: | Wilson, Robert C., Nassar, Matthew R., Gold, Joshua I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723502/ https://www.ncbi.nlm.nih.gov/pubmed/23935472 http://dx.doi.org/10.1371/journal.pcbi.1003150 |
Ejemplares similares
-
Correction: A Mixture of Delta-Rules Approximation to Bayesian Inference in Change-Point Problems
por: Wilson, Robert C., et al.
Publicado: (2018) -
Approximate Bayesian Inference
por: Alquier, Pierre
Publicado: (2020) -
Approximate Bayesian inference for complex ecosystems
por: Stumpf, Michael P.H.
Publicado: (2014) -
Bayesian inference of multi-point macromolecular architecture mixtures at nanometre resolution
por: Embacher, Peter A., et al.
Publicado: (2022) -
Approximate Bayesian inference in semi-mechanistic models
por: Aderhold, Andrej, et al.
Publicado: (2016)