Cargando…
A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses
Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory even...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723910/ https://www.ncbi.nlm.nih.gov/pubmed/23935999 http://dx.doi.org/10.1371/journal.pone.0069374 |
_version_ | 1782278357145092096 |
---|---|
author | Mitchell, Hugh D. Eisfeld, Amie J. Sims, Amy C. McDermott, Jason E. Matzke, Melissa M. Webb-Robertson, Bobbi-Jo M. Tilton, Susan C. Tchitchek, Nicolas Josset, Laurence Li, Chengjun Ellis, Amy L. Chang, Jean H. Heegel, Robert A. Luna, Maria L. Schepmoes, Athena A. Shukla, Anil K. Metz, Thomas O. Neumann, Gabriele Benecke, Arndt G. Smith, Richard D. Baric, Ralph S. Kawaoka, Yoshihiro Katze, Michael G. Waters, Katrina M. |
author_facet | Mitchell, Hugh D. Eisfeld, Amie J. Sims, Amy C. McDermott, Jason E. Matzke, Melissa M. Webb-Robertson, Bobbi-Jo M. Tilton, Susan C. Tchitchek, Nicolas Josset, Laurence Li, Chengjun Ellis, Amy L. Chang, Jean H. Heegel, Robert A. Luna, Maria L. Schepmoes, Athena A. Shukla, Anil K. Metz, Thomas O. Neumann, Gabriele Benecke, Arndt G. Smith, Richard D. Baric, Ralph S. Kawaoka, Yoshihiro Katze, Michael G. Waters, Katrina M. |
author_sort | Mitchell, Hugh D. |
collection | PubMed |
description | Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models. |
format | Online Article Text |
id | pubmed-3723910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37239102013-08-09 A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses Mitchell, Hugh D. Eisfeld, Amie J. Sims, Amy C. McDermott, Jason E. Matzke, Melissa M. Webb-Robertson, Bobbi-Jo M. Tilton, Susan C. Tchitchek, Nicolas Josset, Laurence Li, Chengjun Ellis, Amy L. Chang, Jean H. Heegel, Robert A. Luna, Maria L. Schepmoes, Athena A. Shukla, Anil K. Metz, Thomas O. Neumann, Gabriele Benecke, Arndt G. Smith, Richard D. Baric, Ralph S. Kawaoka, Yoshihiro Katze, Michael G. Waters, Katrina M. PLoS One Research Article Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models. Public Library of Science 2013-07-25 /pmc/articles/PMC3723910/ /pubmed/23935999 http://dx.doi.org/10.1371/journal.pone.0069374 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Mitchell, Hugh D. Eisfeld, Amie J. Sims, Amy C. McDermott, Jason E. Matzke, Melissa M. Webb-Robertson, Bobbi-Jo M. Tilton, Susan C. Tchitchek, Nicolas Josset, Laurence Li, Chengjun Ellis, Amy L. Chang, Jean H. Heegel, Robert A. Luna, Maria L. Schepmoes, Athena A. Shukla, Anil K. Metz, Thomas O. Neumann, Gabriele Benecke, Arndt G. Smith, Richard D. Baric, Ralph S. Kawaoka, Yoshihiro Katze, Michael G. Waters, Katrina M. A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses |
title | A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses |
title_full | A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses |
title_fullStr | A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses |
title_full_unstemmed | A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses |
title_short | A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses |
title_sort | network integration approach to predict conserved regulators related to pathogenicity of influenza and sars-cov respiratory viruses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723910/ https://www.ncbi.nlm.nih.gov/pubmed/23935999 http://dx.doi.org/10.1371/journal.pone.0069374 |
work_keys_str_mv | AT mitchellhughd anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT eisfeldamiej anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT simsamyc anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT mcdermottjasone anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT matzkemelissam anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT webbrobertsonbobbijom anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT tiltonsusanc anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT tchitcheknicolas anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT jossetlaurence anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT lichengjun anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT ellisamyl anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT changjeanh anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT heegelroberta anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT lunamarial anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT schepmoesathenaa anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT shuklaanilk anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT metzthomaso anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT neumanngabriele anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT beneckearndtg anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT smithrichardd anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT baricralphs anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT kawaokayoshihiro anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT katzemichaelg anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT waterskatrinam anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT mitchellhughd networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT eisfeldamiej networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT simsamyc networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT mcdermottjasone networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT matzkemelissam networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT webbrobertsonbobbijom networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT tiltonsusanc networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT tchitcheknicolas networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT jossetlaurence networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT lichengjun networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT ellisamyl networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT changjeanh networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT heegelroberta networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT lunamarial networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT schepmoesathenaa networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT shuklaanilk networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT metzthomaso networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT neumanngabriele networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT beneckearndtg networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT smithrichardd networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT baricralphs networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT kawaokayoshihiro networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT katzemichaelg networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses AT waterskatrinam networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses |