Cargando…

A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory even...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitchell, Hugh D., Eisfeld, Amie J., Sims, Amy C., McDermott, Jason E., Matzke, Melissa M., Webb-Robertson, Bobbi-Jo M., Tilton, Susan C., Tchitchek, Nicolas, Josset, Laurence, Li, Chengjun, Ellis, Amy L., Chang, Jean H., Heegel, Robert A., Luna, Maria L., Schepmoes, Athena A., Shukla, Anil K., Metz, Thomas O., Neumann, Gabriele, Benecke, Arndt G., Smith, Richard D., Baric, Ralph S., Kawaoka, Yoshihiro, Katze, Michael G., Waters, Katrina M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723910/
https://www.ncbi.nlm.nih.gov/pubmed/23935999
http://dx.doi.org/10.1371/journal.pone.0069374
_version_ 1782278357145092096
author Mitchell, Hugh D.
Eisfeld, Amie J.
Sims, Amy C.
McDermott, Jason E.
Matzke, Melissa M.
Webb-Robertson, Bobbi-Jo M.
Tilton, Susan C.
Tchitchek, Nicolas
Josset, Laurence
Li, Chengjun
Ellis, Amy L.
Chang, Jean H.
Heegel, Robert A.
Luna, Maria L.
Schepmoes, Athena A.
Shukla, Anil K.
Metz, Thomas O.
Neumann, Gabriele
Benecke, Arndt G.
Smith, Richard D.
Baric, Ralph S.
Kawaoka, Yoshihiro
Katze, Michael G.
Waters, Katrina M.
author_facet Mitchell, Hugh D.
Eisfeld, Amie J.
Sims, Amy C.
McDermott, Jason E.
Matzke, Melissa M.
Webb-Robertson, Bobbi-Jo M.
Tilton, Susan C.
Tchitchek, Nicolas
Josset, Laurence
Li, Chengjun
Ellis, Amy L.
Chang, Jean H.
Heegel, Robert A.
Luna, Maria L.
Schepmoes, Athena A.
Shukla, Anil K.
Metz, Thomas O.
Neumann, Gabriele
Benecke, Arndt G.
Smith, Richard D.
Baric, Ralph S.
Kawaoka, Yoshihiro
Katze, Michael G.
Waters, Katrina M.
author_sort Mitchell, Hugh D.
collection PubMed
description Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.
format Online
Article
Text
id pubmed-3723910
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37239102013-08-09 A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses Mitchell, Hugh D. Eisfeld, Amie J. Sims, Amy C. McDermott, Jason E. Matzke, Melissa M. Webb-Robertson, Bobbi-Jo M. Tilton, Susan C. Tchitchek, Nicolas Josset, Laurence Li, Chengjun Ellis, Amy L. Chang, Jean H. Heegel, Robert A. Luna, Maria L. Schepmoes, Athena A. Shukla, Anil K. Metz, Thomas O. Neumann, Gabriele Benecke, Arndt G. Smith, Richard D. Baric, Ralph S. Kawaoka, Yoshihiro Katze, Michael G. Waters, Katrina M. PLoS One Research Article Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models. Public Library of Science 2013-07-25 /pmc/articles/PMC3723910/ /pubmed/23935999 http://dx.doi.org/10.1371/journal.pone.0069374 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Mitchell, Hugh D.
Eisfeld, Amie J.
Sims, Amy C.
McDermott, Jason E.
Matzke, Melissa M.
Webb-Robertson, Bobbi-Jo M.
Tilton, Susan C.
Tchitchek, Nicolas
Josset, Laurence
Li, Chengjun
Ellis, Amy L.
Chang, Jean H.
Heegel, Robert A.
Luna, Maria L.
Schepmoes, Athena A.
Shukla, Anil K.
Metz, Thomas O.
Neumann, Gabriele
Benecke, Arndt G.
Smith, Richard D.
Baric, Ralph S.
Kawaoka, Yoshihiro
Katze, Michael G.
Waters, Katrina M.
A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses
title A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses
title_full A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses
title_fullStr A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses
title_full_unstemmed A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses
title_short A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses
title_sort network integration approach to predict conserved regulators related to pathogenicity of influenza and sars-cov respiratory viruses
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723910/
https://www.ncbi.nlm.nih.gov/pubmed/23935999
http://dx.doi.org/10.1371/journal.pone.0069374
work_keys_str_mv AT mitchellhughd anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT eisfeldamiej anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT simsamyc anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT mcdermottjasone anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT matzkemelissam anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT webbrobertsonbobbijom anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT tiltonsusanc anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT tchitcheknicolas anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT jossetlaurence anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT lichengjun anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT ellisamyl anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT changjeanh anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT heegelroberta anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT lunamarial anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT schepmoesathenaa anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT shuklaanilk anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT metzthomaso anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT neumanngabriele anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT beneckearndtg anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT smithrichardd anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT baricralphs anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT kawaokayoshihiro anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT katzemichaelg anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT waterskatrinam anetworkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT mitchellhughd networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT eisfeldamiej networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT simsamyc networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT mcdermottjasone networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT matzkemelissam networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT webbrobertsonbobbijom networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT tiltonsusanc networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT tchitcheknicolas networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT jossetlaurence networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT lichengjun networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT ellisamyl networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT changjeanh networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT heegelroberta networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT lunamarial networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT schepmoesathenaa networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT shuklaanilk networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT metzthomaso networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT neumanngabriele networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT beneckearndtg networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT smithrichardd networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT baricralphs networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT kawaokayoshihiro networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT katzemichaelg networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses
AT waterskatrinam networkintegrationapproachtopredictconservedregulatorsrelatedtopathogenicityofinfluenzaandsarscovrespiratoryviruses