Cargando…
A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses
BACKGROUND: Heterogeneity has a key role in meta-analysis methods and can greatly affect conclusions. However, true levels of heterogeneity are unknown and often researchers assume homogeneity. We aim to: a) investigate the prevalence of unobserved heterogeneity and the validity of the assumption of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724681/ https://www.ncbi.nlm.nih.gov/pubmed/23922860 http://dx.doi.org/10.1371/journal.pone.0069930 |
Sumario: | BACKGROUND: Heterogeneity has a key role in meta-analysis methods and can greatly affect conclusions. However, true levels of heterogeneity are unknown and often researchers assume homogeneity. We aim to: a) investigate the prevalence of unobserved heterogeneity and the validity of the assumption of homogeneity; b) assess the performance of various meta-analysis methods; c) apply the findings to published meta-analyses. METHODS AND FINDINGS: We accessed 57,397 meta-analyses, available in the Cochrane Library in August 2012. Using simulated data we assessed the performance of various meta-analysis methods in different scenarios. The prevalence of a zero heterogeneity estimate in the simulated scenarios was compared with that in the Cochrane data, to estimate the degree of unobserved heterogeneity in the latter. We re-analysed all meta-analyses using all methods and assessed the sensitivity of the statistical conclusions. Levels of unobserved heterogeneity in the Cochrane data appeared to be high, especially for small meta-analyses. A bootstrapped version of the DerSimonian-Laird approach performed best in both detecting heterogeneity and in returning more accurate overall effect estimates. Re-analysing all meta-analyses with this new method we found that in cases where heterogeneity had originally been detected but ignored, 17–20% of the statistical conclusions changed. Rates were much lower where the original analysis did not detect heterogeneity or took it into account, between 1% and 3%. CONCLUSIONS: When evidence for heterogeneity is lacking, standard practice is to assume homogeneity and apply a simpler fixed-effect meta-analysis. We find that assuming homogeneity often results in a misleading analysis, since heterogeneity is very likely present but undetected. Our new method represents a small improvement but the problem largely remains, especially for very small meta-analyses. One solution is to test the sensitivity of the meta-analysis conclusions to assumed moderate and large degrees of heterogeneity. Equally, whenever heterogeneity is detected, it should not be ignored. |
---|