Cargando…

Juvenile growth and survival of the apple snail Pomacea canaliculata (Caenogastropoda: Ampullariidae) reared at different constant temperatures

BACKGROUND: Pomacea canaliculata is a freshwater snail that cultured under certain conditions could provide interesting rewards in research and aquaculture. P. canaliculata is usually reared at 25°C, though the optimal temperature for culturing this species, that balances growth and survival rates,...

Descripción completa

Detalles Bibliográficos
Autores principales: Seuffert, María E, Martín, Pablo R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724978/
https://www.ncbi.nlm.nih.gov/pubmed/23961390
http://dx.doi.org/10.1186/2193-1801-2-312
Descripción
Sumario:BACKGROUND: Pomacea canaliculata is a freshwater snail that cultured under certain conditions could provide interesting rewards in research and aquaculture. P. canaliculata is usually reared at 25°C, though the optimal temperature for culturing this species, that balances growth and survival rates, is so far unknown. In this work we present results of growth and survival of cohorts reared in the laboratory at different constant water temperatures (15, 20, 25, 30 and 35°C) during the pre-reproductive period. FINDINGS: Two different groups were recognized among the five treatments: the two lower temperatures (15 and 20°C) that showed no mortality but with very low growth rates and the treatments of 25, 30 and 35°C in which snails grew faster but displayed a reduction in survival as temperature increases. After 10 weeks, the mean shell lengths attained at 30 and 35°C were only 2–3 mm higher than that of the treatment of 25°C and were not statistically different. CONCLUSIONS: Our results support using water temperatures of 25°C for the rearing of cohorts when the objective is to quickly obtain numerous large snails. Temperatures of 15 and 20°C may be appropriate if the aim is to preserve juveniles for long periods with a very low risk of mortality. The results reported here will be useful to the scheduling of laboratory trials intended for basic research, snail control or mass rearing for different applications of this species.