Cargando…
Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey)
As part of the International Continental Drilling Program deep lake drilling project PaleoVan, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4‰, alkalinity 155 m mEq(-1), pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (N...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725400/ https://www.ncbi.nlm.nih.gov/pubmed/23908647 http://dx.doi.org/10.3389/fmicb.2013.00209 |
_version_ | 1782476785100783616 |
---|---|
author | Glombitza, Clemens Stockhecke, Mona Schubert, Carsten J. Vetter, Alexandra Kallmeyer, Jens |
author_facet | Glombitza, Clemens Stockhecke, Mona Schubert, Carsten J. Vetter, Alexandra Kallmeyer, Jens |
author_sort | Glombitza, Clemens |
collection | PubMed |
description | As part of the International Continental Drilling Program deep lake drilling project PaleoVan, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4‰, alkalinity 155 m mEq(-1), pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65–75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (≤22 nmol cm(-3) day(-1)) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. |
format | Online Article Text |
id | pubmed-3725400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-37254002013-08-01 Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey) Glombitza, Clemens Stockhecke, Mona Schubert, Carsten J. Vetter, Alexandra Kallmeyer, Jens Front Microbiol Microbiology As part of the International Continental Drilling Program deep lake drilling project PaleoVan, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4‰, alkalinity 155 m mEq(-1), pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65–75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (≤22 nmol cm(-3) day(-1)) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. Frontiers Media S.A. 2013-07-29 /pmc/articles/PMC3725400/ /pubmed/23908647 http://dx.doi.org/10.3389/fmicb.2013.00209 Text en Copyright © Glombitza, Stockhecke, Schubert, Vetter and Kallmeyer. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Microbiology Glombitza, Clemens Stockhecke, Mona Schubert, Carsten J. Vetter, Alexandra Kallmeyer, Jens Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey) |
title | Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey) |
title_full | Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey) |
title_fullStr | Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey) |
title_full_unstemmed | Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey) |
title_short | Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey) |
title_sort | sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline lake van (eastern anatolia, turkey) |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725400/ https://www.ncbi.nlm.nih.gov/pubmed/23908647 http://dx.doi.org/10.3389/fmicb.2013.00209 |
work_keys_str_mv | AT glombitzaclemens sulfatereductioncontrolledbyorganicmatteravailabilityindeepsedimentcoresfromthesalinealkalinelakevaneasternanatoliaturkey AT stockheckemona sulfatereductioncontrolledbyorganicmatteravailabilityindeepsedimentcoresfromthesalinealkalinelakevaneasternanatoliaturkey AT schubertcarstenj sulfatereductioncontrolledbyorganicmatteravailabilityindeepsedimentcoresfromthesalinealkalinelakevaneasternanatoliaturkey AT vetteralexandra sulfatereductioncontrolledbyorganicmatteravailabilityindeepsedimentcoresfromthesalinealkalinelakevaneasternanatoliaturkey AT kallmeyerjens sulfatereductioncontrolledbyorganicmatteravailabilityindeepsedimentcoresfromthesalinealkalinelakevaneasternanatoliaturkey |