Cargando…

Purification and characterization of a novel plant lectin from Pinellia ternata with antineoplastic activity

A novel Pinellia ternata lectin was purified from the bulbs of a Chinese herb Pinellia ternata using a combination of hydrophobic chromatography and DEAE-ion exchange chromatography. The lectin was found to be a homodimer of 12093.3 Da subunits as determined by gel filtration and MS. Biochemical cha...

Descripción completa

Detalles Bibliográficos
Autores principales: Zuo, Zhenyu, Fan, Handong, Wang, Xue, Zhou, Wei, Li, Lingling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing AG 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725870/
https://www.ncbi.nlm.nih.gov/pubmed/23961344
http://dx.doi.org/10.1186/2193-1801-1-13
Descripción
Sumario:A novel Pinellia ternata lectin was purified from the bulbs of a Chinese herb Pinellia ternata using a combination of hydrophobic chromatography and DEAE-ion exchange chromatography. The lectin was found to be a homodimer of 12093.3 Da subunits as determined by gel filtration and MS. Biochemical characterization of the lectin revealed the existence of a glycoprotein, which contains 3.22% neutral sugars. The N-terminal 10-amino acid sequence of the lectin, QGVNISGQVK, has not been reported for other lectins. The lectin had a special agglutinating activity with mouse erythrocytes at a minimum concentration of 8.0 ug/ml. The lectin was stable in the pH range of pH 5–12 and temperatures up to 80°C for 30 min. The results of MTT experiment showed that the lectin had significant effect towards tumor cells, the maximum inhibition of cell proliferation with Sarcoma 180, HeLa and K562 cell line were 85.2%, 74.6% and 59.4% respectively. Experimental therapy in vivo also showed that PTL apparently inhibited transplanted tumor in mice. Flow cytometric analysis demonstrated that PTL inhibited the proliferation of Sarcoma 180 in a time- and dose-dependent manner through inhibiting the transition of G(1)/S and subsequently inducing G(0)/G(1) cell cycle arrest. Thus, Pinellia ternata lectin displays a high potential for antitumor activity.