Cargando…

Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature

Considering the cost-effectiveness of bioethanol production, there is a need for a yeast strain which can convert glucose and xylose into ethanol at elevated temperatures. We succeeded in isolating a yeast strain, designated strain ATY839, which was capable of ethanolic fermentation at temperatures...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanimura, Ayumi, Nakamura, Toshihide, Watanabe, Itsuki, Ogawa, Jun, Shima, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing AG 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725896/
https://www.ncbi.nlm.nih.gov/pubmed/23961357
http://dx.doi.org/10.1186/2193-1801-1-27
Descripción
Sumario:Considering the cost-effectiveness of bioethanol production, there is a need for a yeast strain which can convert glucose and xylose into ethanol at elevated temperatures. We succeeded in isolating a yeast strain, designated strain ATY839, which was capable of ethanolic fermentation at temperatures above those previously reported for yeasts able to ferment both glucose and xylose. Strain ATY839 was capable of producing a substantial amount of ethanol at up to 37°C from 2% glucose or 2% xylose. The results of a phylogenetic analysis suggest that strain ATY839 belongs to Candida shehatae. In additional, ethanol production from rice straw by strain ATY839 was examined. Compared with the control strains (Saccharomyces cerevisiae NBRC 0224, Scheffersomyces stipitis NBRC 10063, and C. shehatae ATCC 22984), strain ATY839 produced more ethanol in SSF even at 37°C. The theoretical maximum yield of strain ATY839 was 71.6% at 24 h. Thus, strain ATY839 is considered to be the most tolerant to high temperature of the C. shehatae strains.