Cargando…

Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt

PURPOSE: Oxidative stress on retinal pigment epithelial (RPE) cells is thought to play a crucial role in the development and progression of age-related macular degeneration. Astaxanthin (AST) is a carotenoid that shows significant antioxidant properties. This study was designed to investigate the pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhongrui, Dong, Xin, Liu, Hongling, Chen, Xi, Shi, Huanqi, Fan, Yan, Hou, Dingshan, Zhang, Xiaomei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725964/
https://www.ncbi.nlm.nih.gov/pubmed/23901249
Descripción
Sumario:PURPOSE: Oxidative stress on retinal pigment epithelial (RPE) cells is thought to play a crucial role in the development and progression of age-related macular degeneration. Astaxanthin (AST) is a carotenoid that shows significant antioxidant properties. This study was designed to investigate the protective effect of AST on ARPE-19 cells against oxidative stress and the possible underlying mechanism. METHODS: ARPE-19 cells exposed to different doses of H(2)O(2) were incubated with various concentrations of AST and cell viability subsequently detected with the (4-[3-[4-iodophenyl]-2–4(4-nitrophenyl)-2H-5- tetrazolio-1,3-benzene disulfonate]; WST-1) assay. The apoptosis rate and intracellular levels of reactive oxygen species (ROS) were measured with flow cytometry. NAD(P)H quinine oxidoreductase 1 (NQO1), hemeoxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC) expression were examined with real-time PCR and western blotting. The nuclear localization of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein and the expression levels of cleaved caspase-3 and protein kinase B proteins were evaluated with western blotting. RESULTS: AST clearly reduced H(2)O(2)-induced cell viability loss, cell apoptosis, and intracellular generation of ROS. Furthermore, treatment with AST activated the Nrf2-ARE pathway by inducing Nrf2 nuclear localization. Consequently, Phase II enzymes NQO1, HO-1, GCLM, and GCLC mRNA and proteins were increased. AST inhibited expression of H(2)O(2)-induced cleaved caspase-3 protein. Activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway was involved in the protective effect of AST on the ARPE-19 cells. CONCLUSIONS: AST protected ARPE-19 cells against H(2)O(2)-induced oxidative stress via Nrf2-mediated upregulation of the expression of Phase II enzymes involving the PI3K/Akt pathway.