Cargando…
Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology
BACKGROUND: Recent advancements in genetics and proteomics have led to the acquisition of large quantitative data sets. However, the use of these data to reverse engineer biochemical networks has remained a challenging problem. Many methods have been proposed to infer biochemical network topologies...
Autores principales: | Santra, Tapesh, Kolch, Walter, Kholodenko, Boris N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726398/ https://www.ncbi.nlm.nih.gov/pubmed/23829771 http://dx.doi.org/10.1186/1752-0509-7-57 |
Ejemplares similares
-
Navigating the Multilayered Organization of Eukaryotic Signaling: A New Trend in Data Integration
por: Santra, Tapesh, et al.
Publicado: (2014) -
A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks
por: Santra, Tapesh
Publicado: (2014) -
BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research
por: Iglesias-Martinez, Luis F., et al.
Publicado: (2016) -
Impact of measurement noise, experimental design, and estimation methods on Modular Response Analysis based network reconstruction
por: Thomaseth, Caterina, et al.
Publicado: (2018) -
Bayesian inference of biochemical kinetic parameters using the linear noise approximation
por: Komorowski, Michał, et al.
Publicado: (2009)