Cargando…
Ion beam-generated surface ripples: new insight in the underlying mechanism
A new hydrodynamic mechanism is proposed for the ion beam-induced surface patterning on solid surfaces. Unlike the standard mechanisms based on the ion beam impact-generated erosion and mass redistribution at the free surface (proposed by Bradley-Harper and its extended theories), the new mechanism...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726414/ https://www.ncbi.nlm.nih.gov/pubmed/23890205 http://dx.doi.org/10.1186/1556-276X-8-336 |
Sumario: | A new hydrodynamic mechanism is proposed for the ion beam-induced surface patterning on solid surfaces. Unlike the standard mechanisms based on the ion beam impact-generated erosion and mass redistribution at the free surface (proposed by Bradley-Harper and its extended theories), the new mechanism proposes that the incompressible solid flow in amorphous layer leads to the formation of ripple patterns at the amorphous-crystalline (a/c) interface and hence at the free surface. Ion beam-stimulated solid flow inside the amorphous layer probably controls the wavelength, whereas the amount of material transported and re-deposited at a/c interface control the amplitude of ripples. |
---|