Cargando…

BAFF Controls Neural Cell Survival through BAFF Receptor

Various neuroprotective factors have been shown to help prevention of neuronal cell death, which is responsible for the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, most of these therapeutic potentials have been tested by administration of recombina...

Descripción completa

Detalles Bibliográficos
Autores principales: Tada, Satoru, Yasui, Teruhito, Nakatsuji, Yuji, Okuno, Tatsusada, Koda, Toru, Mochizuki, Hideki, Sakoda, Saburo, Kikutani, Hitoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726595/
https://www.ncbi.nlm.nih.gov/pubmed/23923031
http://dx.doi.org/10.1371/journal.pone.0070924
Descripción
Sumario:Various neuroprotective factors have been shown to help prevention of neuronal cell death, which is responsible for the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, most of these therapeutic potentials have been tested by administration of recombinant proteins, transgenic expression or virus vector-mediated gene transfer. Therefore, it remains to be clarified whether any endogenous factors has advantage for neuroprotection in a pathological nervous system. Here we show the role of BAFF-R signaling pathway in the control of neural cell survival. Both B cell–activating factor (BAFF) and its receptor (BAFF-R) are expressed in mouse neurons and BAFF-R deficiency reduces the survival of primary cultured neurons. Although many studies have so far addressed the functional role of BAFF-R on the differentiation of B cells, impaired BAFF-R signaling resulted in accelerated disease progression in an animal model of inherited ALS. We further demonstrate that BAFF-R deficient bone marrow cells or genetic depletion of B cells does not affect the disease progression, indicating that BAFF-mediated signals on neurons, not on B cells, support neural cell survival. These findings suggest opportunities to improve therapeutic outcome for patients with neurodegenerative diseases by synthesized BAFF treatment.