Cargando…

Generation of Live Piglets for the First Time Using Sperm Retrieved from Immature Testicular Tissue Cryopreserved and Grafted into Nude Mice

Cryopreservation of immature testicular tissues is essential for increasing the possibilities of offspring generation by testicular xenografting for agricultural or medical purposes. However, successful production of offspring from the sperm involved has never been reported previously. In the presen...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaneko, Hiroyuki, Kikuchi, Kazuhiro, Nakai, Michiko, Somfai, Tamas, Noguchi, Junko, Tanihara, Fuminori, Ito, Junya, Kashiwazaki, Naomi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726602/
https://www.ncbi.nlm.nih.gov/pubmed/23923039
http://dx.doi.org/10.1371/journal.pone.0070989
Descripción
Sumario:Cryopreservation of immature testicular tissues is essential for increasing the possibilities of offspring generation by testicular xenografting for agricultural or medical purposes. However, successful production of offspring from the sperm involved has never been reported previously. In the present study, therefore, using intracytoplasmic sperm injection (ICSI), we examined whether xenogeneic sperm obtained from immature pig testicular tissue after cryopreservation would have the capacity to produce live piglets. Testicular fragments from 9- to 11-day-old piglets were vitrified after 10- or 20-min immersion in vitrification solution containing ethylene glycol (EG), polyvinyl pyrrolidone (PVP) and trehalose as cryoprotectants, and then stored in liquid nitrogen for more than 140 days. Thirty nude mice were assigned to each immersion-time group. Testicular fragments were transplanted under the back skin of castrated mice immediately after warming and removal of the cryoprotectants. Blood and testicular grafts were then recovered from the recipient mice on days 60, 120, 180 and 230−350 (day 0 =  grafting). Histological assessment of the testicular grafts and analyses of inhibin and testosterone production revealed no significant differences between the two immersion-time groups, indicating equal growth activity of the cryopreserved tissues. A single sperm obtained from a mouse in each group on day 230−350 was injected into an in vitro-matured porcine oocyte, and then the ICSI oocytes were transferred to the oviducts of estrus-synchronized recipient gilts. One out of 4 gilts that had received oocytes fertilized using sperm from the 10-min immersion group delivered 2 live piglets, and one of another 4 gilts from the 20-min group delivered 4 live piglets. Thus, we have successfully generated porcine offspring utilizing sperm from immature testicular tissues after cryopreservation and transplantation into nude mice. The present model using pigs will be applicable to many large animals, since pigs are phylogenetically distant from the murine recipients.