Cargando…

Force produced after stretch in sarcomeres and half-sarcomeres isolated from skeletal muscles

The goal of this study was to evaluate if isolated sarcomeres and half-sarcomeres produce a long-lasting increase in force after a stretch is imposed during activation. Single and half-sarcomeres were isolated from myofibrils using micro-needles, which were also used for force measurements. After fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Minozzo, Fábio C., Baroni, Bruno M., Correa, José A., Vaz, Marco A., Rassier, Dilson E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728588/
https://www.ncbi.nlm.nih.gov/pubmed/23900500
http://dx.doi.org/10.1038/srep02320
Descripción
Sumario:The goal of this study was to evaluate if isolated sarcomeres and half-sarcomeres produce a long-lasting increase in force after a stretch is imposed during activation. Single and half-sarcomeres were isolated from myofibrils using micro-needles, which were also used for force measurements. After full force development, both preparations were stretched by different magnitudes. The sarcomere length (SL) or half-sarcomere length variations (HSL) were extracted by measuring the initial and final distances from the Z-line to the adjacent Z-line or to a region externally adjacent to the M-line of the sarcomere, respectively. Half-sarcomeres generated approximately the same amount of isometric force (29.0 ± SD 15.5 nN·μm(−2)) as single sarcomeres (32.1 ± SD 15.3 nN·μm(−2)) when activated. In both cases, the steady-state forces after stretch were higher than the forces during isometric contractions at similar conditions. The results suggest that stretch-induced force enhancement is partly caused by proteins within the half-sarcomere.