Cargando…

Threshold-limited spreading in social networks with multiple initiators

A classical model for social-influence-driven opinion change is the threshold model. Here we study cascades of opinion change driven by threshold model dynamics in the case where multiple initiators trigger the cascade, and where all nodes possess the same adoption threshold ϕ. Specifically, using e...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, P., Sreenivasan, S., Szymanski, B. K., Korniss, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728590/
https://www.ncbi.nlm.nih.gov/pubmed/23900230
http://dx.doi.org/10.1038/srep02330
Descripción
Sumario:A classical model for social-influence-driven opinion change is the threshold model. Here we study cascades of opinion change driven by threshold model dynamics in the case where multiple initiators trigger the cascade, and where all nodes possess the same adoption threshold ϕ. Specifically, using empirical and stylized models of social networks, we study cascade size as a function of the initiator fraction p. We find that even for arbitrarily high value of ϕ, there exists a critical initiator fraction p(c)(ϕ) beyond which the cascade becomes global. Network structure, in particular clustering, plays a significant role in this scenario. Similarly to the case of single-node or single-clique initiators studied previously, we observe that community structure within the network facilitates opinion spread to a larger extent than a homogeneous random network. Finally, we study the efficacy of different initiator selection strategies on the size of the cascade and the cascade window.