Cargando…
A detachable mobile and adjustable telemetry system
Many traditional mobile telemetry systems require permanently mounting a rod through the cabin of a vehicle to serve as the mast for a directional antenna. In this article we present an alternative to this configuration by providing a platform that can be placed atop the vehicle in which the antenna...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728928/ https://www.ncbi.nlm.nih.gov/pubmed/23919133 http://dx.doi.org/10.1002/ece3.591 |
_version_ | 1782278932110770176 |
---|---|
author | Parker, Tommy S Persons, William E Bradley, Joseph G Gregg, Margaret Gonzales, Shinelle K Helton, Jesse S |
author_facet | Parker, Tommy S Persons, William E Bradley, Joseph G Gregg, Margaret Gonzales, Shinelle K Helton, Jesse S |
author_sort | Parker, Tommy S |
collection | PubMed |
description | Many traditional mobile telemetry systems require permanently mounting a rod through the cabin of a vehicle to serve as the mast for a directional antenna. In this article we present an alternative to this configuration by providing a platform that can be placed atop the vehicle in which the antenna mast can be mounted and controlled from the cabin of the vehicle. Thereby making this design a viable option for researchers who share vehicles with others that may not approve of permanent vehicle modifications such as placing a hole in the roof of the vehicle as required by traditional mobile configurations. We tested the precision and accuracy of detachable mobile and adjustable telemetry system (DMATS) in an urban park with varying terrain, tree stands, overhead wires, and other structures that can contribute to signal deflection. We placed three radiocollars 50 m apart and 1.2 m above the ground then established three testing stations ∼280 m from the location of the radiocollars. The DMATS platform required 12 h for completion and cost $1059 USD. Four technicians were randomly assigned radio collars to triangulate using DMATS and a handheld telemetry system. We used a one-way analysis of variance (ANOVA) with a Scheffe post hoc test to compare error ellipses between azimuths taken using DMATS and the hand held system. Average error ellipses for all testers was 1.96 ± 1.22 ha. No significant differences were found between error ellipses of testers (P = 0.292). Our design, the DMATS, does not require any vehicle modification; thereby, making this a viable option for researchers sharing vehicles with others that may not approve of permanent vehicle alterations. |
format | Online Article Text |
id | pubmed-3728928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-37289282013-08-05 A detachable mobile and adjustable telemetry system Parker, Tommy S Persons, William E Bradley, Joseph G Gregg, Margaret Gonzales, Shinelle K Helton, Jesse S Ecol Evol Original Research Many traditional mobile telemetry systems require permanently mounting a rod through the cabin of a vehicle to serve as the mast for a directional antenna. In this article we present an alternative to this configuration by providing a platform that can be placed atop the vehicle in which the antenna mast can be mounted and controlled from the cabin of the vehicle. Thereby making this design a viable option for researchers who share vehicles with others that may not approve of permanent vehicle modifications such as placing a hole in the roof of the vehicle as required by traditional mobile configurations. We tested the precision and accuracy of detachable mobile and adjustable telemetry system (DMATS) in an urban park with varying terrain, tree stands, overhead wires, and other structures that can contribute to signal deflection. We placed three radiocollars 50 m apart and 1.2 m above the ground then established three testing stations ∼280 m from the location of the radiocollars. The DMATS platform required 12 h for completion and cost $1059 USD. Four technicians were randomly assigned radio collars to triangulate using DMATS and a handheld telemetry system. We used a one-way analysis of variance (ANOVA) with a Scheffe post hoc test to compare error ellipses between azimuths taken using DMATS and the hand held system. Average error ellipses for all testers was 1.96 ± 1.22 ha. No significant differences were found between error ellipses of testers (P = 0.292). Our design, the DMATS, does not require any vehicle modification; thereby, making this a viable option for researchers sharing vehicles with others that may not approve of permanent vehicle alterations. Blackwell Publishing Ltd 2013-07 2013-05-18 /pmc/articles/PMC3728928/ /pubmed/23919133 http://dx.doi.org/10.1002/ece3.591 Text en © 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Research Parker, Tommy S Persons, William E Bradley, Joseph G Gregg, Margaret Gonzales, Shinelle K Helton, Jesse S A detachable mobile and adjustable telemetry system |
title | A detachable mobile and adjustable telemetry system |
title_full | A detachable mobile and adjustable telemetry system |
title_fullStr | A detachable mobile and adjustable telemetry system |
title_full_unstemmed | A detachable mobile and adjustable telemetry system |
title_short | A detachable mobile and adjustable telemetry system |
title_sort | detachable mobile and adjustable telemetry system |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728928/ https://www.ncbi.nlm.nih.gov/pubmed/23919133 http://dx.doi.org/10.1002/ece3.591 |
work_keys_str_mv | AT parkertommys adetachablemobileandadjustabletelemetrysystem AT personswilliame adetachablemobileandadjustabletelemetrysystem AT bradleyjosephg adetachablemobileandadjustabletelemetrysystem AT greggmargaret adetachablemobileandadjustabletelemetrysystem AT gonzalesshinellek adetachablemobileandadjustabletelemetrysystem AT heltonjesses adetachablemobileandadjustabletelemetrysystem AT parkertommys detachablemobileandadjustabletelemetrysystem AT personswilliame detachablemobileandadjustabletelemetrysystem AT bradleyjosephg detachablemobileandadjustabletelemetrysystem AT greggmargaret detachablemobileandadjustabletelemetrysystem AT gonzalesshinellek detachablemobileandadjustabletelemetrysystem AT heltonjesses detachablemobileandadjustabletelemetrysystem |