Cargando…
Estimating resource selection with count data
Resource selection functions (RSFs) are typically estimated by comparing covariates at a discrete set of “used” locations to those from an “available” set of locations. This RSF approach treats the response as binary and does not account for intensity of use among habitat units where locations were...
Autores principales: | Nielson, Ryan M, Sawyer, Hall |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728960/ https://www.ncbi.nlm.nih.gov/pubmed/23919165 http://dx.doi.org/10.1002/ece3.617 |
Ejemplares similares
-
Not every estimate counts – evaluation of cell composition estimation approaches in brain bulk tissue data
por: Toker, Lilah, et al.
Publicado: (2023) -
Accurate estimation of molecular counts from amplicon sequence data with unique molecular identifiers
por: Peng, Xiyu, et al.
Publicado: (2023) -
Quantile estimation of semiparametric model with time-varying coefficients for panel count data
por: Wang, Yijun, et al.
Publicado: (2021) -
On a Mixed Poisson Liu Regression Estimator for Overdispersed and Multicollinear Count Data
por: Tharshan, Ramajeyam, et al.
Publicado: (2022) -
Origin–Destination Flow Estimation from Link Count Data Only
por: Dey, Subhrasankha, et al.
Publicado: (2020)