Cargando…
Production and Evaluation of a Recombinant Chimeric Vaccine against Clostridium botulinum Neurotoxin Types C and D
Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in man...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729698/ https://www.ncbi.nlm.nih.gov/pubmed/23936080 http://dx.doi.org/10.1371/journal.pone.0069692 |
_version_ | 1782278990932738048 |
---|---|
author | Gil, Luciana A. F. da Cunha, Carlos Eduardo P. Moreira, Gustavo M. S. G. Salvarani, Felipe M. Assis, Ronnie A. Lobato, Francisco Carlos F. Mendonça, Marcelo Dellagostin, Odir A. Conceição, Fabricio R. |
author_facet | Gil, Luciana A. F. da Cunha, Carlos Eduardo P. Moreira, Gustavo M. S. G. Salvarani, Felipe M. Assis, Ronnie A. Lobato, Francisco Carlos F. Mendonça, Marcelo Dellagostin, Odir A. Conceição, Fabricio R. |
author_sort | Gil, Luciana A. F. |
collection | PubMed |
description | Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in many countries. Vaccination has been reported to be the most effective way to control bovine botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. Neutralizing antibodies targeted against the C-terminal fragment of the BoNT heavy chain (H(C)) are known to confer efficient protection against lethal doses of BoNTs. In this study, a novel recombinant chimera, consisting of Escherichia coli heat-labile enterotoxin B subunit (LTB), a strong adjuvant of the humoral immune response, fused to the H(C) of BoNT serotypes C and D, was produced in E. coli. Mice vaccinated with the chimera containing LTB and an equivalent molar ratio of the chimera without LTB plus aluminum hydroxide (Al(OH)(3)) developed 2 IU/mL of antitoxins for both serotypes. Guinea pigs immunized with the recombinant chimera with LTB plus Al(OH)(3) developed a protective immune response against both BoNT/C (5 IU/mL) and BoNT/D (10 IU/mL), as determined by a mouse neutralization bioassay with pooled sera. The results achieved with guinea pig sera fulfilled the requirements of commercial vaccines for prevention of botulism, as determined by the Brazilian Ministry of Agriculture, Livestock and Food, Supply. The presence of LTB was essential for the development of a strong humoral immune response, as it acted in synergism with Al(OH)(3). Thus, the vaccine described in this study is a strong candidate for the control of botulism in cattle. |
format | Online Article Text |
id | pubmed-3729698 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37296982013-08-09 Production and Evaluation of a Recombinant Chimeric Vaccine against Clostridium botulinum Neurotoxin Types C and D Gil, Luciana A. F. da Cunha, Carlos Eduardo P. Moreira, Gustavo M. S. G. Salvarani, Felipe M. Assis, Ronnie A. Lobato, Francisco Carlos F. Mendonça, Marcelo Dellagostin, Odir A. Conceição, Fabricio R. PLoS One Research Article Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in many countries. Vaccination has been reported to be the most effective way to control bovine botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. Neutralizing antibodies targeted against the C-terminal fragment of the BoNT heavy chain (H(C)) are known to confer efficient protection against lethal doses of BoNTs. In this study, a novel recombinant chimera, consisting of Escherichia coli heat-labile enterotoxin B subunit (LTB), a strong adjuvant of the humoral immune response, fused to the H(C) of BoNT serotypes C and D, was produced in E. coli. Mice vaccinated with the chimera containing LTB and an equivalent molar ratio of the chimera without LTB plus aluminum hydroxide (Al(OH)(3)) developed 2 IU/mL of antitoxins for both serotypes. Guinea pigs immunized with the recombinant chimera with LTB plus Al(OH)(3) developed a protective immune response against both BoNT/C (5 IU/mL) and BoNT/D (10 IU/mL), as determined by a mouse neutralization bioassay with pooled sera. The results achieved with guinea pig sera fulfilled the requirements of commercial vaccines for prevention of botulism, as determined by the Brazilian Ministry of Agriculture, Livestock and Food, Supply. The presence of LTB was essential for the development of a strong humoral immune response, as it acted in synergism with Al(OH)(3). Thus, the vaccine described in this study is a strong candidate for the control of botulism in cattle. Public Library of Science 2013-07-31 /pmc/articles/PMC3729698/ /pubmed/23936080 http://dx.doi.org/10.1371/journal.pone.0069692 Text en © 2013 Gil et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gil, Luciana A. F. da Cunha, Carlos Eduardo P. Moreira, Gustavo M. S. G. Salvarani, Felipe M. Assis, Ronnie A. Lobato, Francisco Carlos F. Mendonça, Marcelo Dellagostin, Odir A. Conceição, Fabricio R. Production and Evaluation of a Recombinant Chimeric Vaccine against Clostridium botulinum Neurotoxin Types C and D |
title | Production and Evaluation of a Recombinant Chimeric Vaccine against Clostridium botulinum Neurotoxin Types C and D |
title_full | Production and Evaluation of a Recombinant Chimeric Vaccine against Clostridium botulinum Neurotoxin Types C and D |
title_fullStr | Production and Evaluation of a Recombinant Chimeric Vaccine against Clostridium botulinum Neurotoxin Types C and D |
title_full_unstemmed | Production and Evaluation of a Recombinant Chimeric Vaccine against Clostridium botulinum Neurotoxin Types C and D |
title_short | Production and Evaluation of a Recombinant Chimeric Vaccine against Clostridium botulinum Neurotoxin Types C and D |
title_sort | production and evaluation of a recombinant chimeric vaccine against clostridium botulinum neurotoxin types c and d |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729698/ https://www.ncbi.nlm.nih.gov/pubmed/23936080 http://dx.doi.org/10.1371/journal.pone.0069692 |
work_keys_str_mv | AT gillucianaaf productionandevaluationofarecombinantchimericvaccineagainstclostridiumbotulinumneurotoxintypescandd AT dacunhacarloseduardop productionandevaluationofarecombinantchimericvaccineagainstclostridiumbotulinumneurotoxintypescandd AT moreiragustavomsg productionandevaluationofarecombinantchimericvaccineagainstclostridiumbotulinumneurotoxintypescandd AT salvaranifelipem productionandevaluationofarecombinantchimericvaccineagainstclostridiumbotulinumneurotoxintypescandd AT assisronniea productionandevaluationofarecombinantchimericvaccineagainstclostridiumbotulinumneurotoxintypescandd AT lobatofranciscocarlosf productionandevaluationofarecombinantchimericvaccineagainstclostridiumbotulinumneurotoxintypescandd AT mendoncamarcelo productionandevaluationofarecombinantchimericvaccineagainstclostridiumbotulinumneurotoxintypescandd AT dellagostinodira productionandevaluationofarecombinantchimericvaccineagainstclostridiumbotulinumneurotoxintypescandd AT conceicaofabricior productionandevaluationofarecombinantchimericvaccineagainstclostridiumbotulinumneurotoxintypescandd |