Cargando…

Functions of S-nitrosylation in plant hormone networks

In plants, a wide frame of physiological processes are regulated in liaison by both, nitric oxide (NO) and hormones. Such overlapping roles raise the question of how the cross-talk between NO and hormones trigger common physiological responses. In general, NO has been largely accepted as a signaling...

Descripción completa

Detalles Bibliográficos
Autores principales: Parí, Ramiro, Iglesias, Marí J., Terrile, Marí C., Casalongué, Claudia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729995/
https://www.ncbi.nlm.nih.gov/pubmed/23914202
http://dx.doi.org/10.3389/fpls.2013.00294
Descripción
Sumario:In plants, a wide frame of physiological processes are regulated in liaison by both, nitric oxide (NO) and hormones. Such overlapping roles raise the question of how the cross-talk between NO and hormones trigger common physiological responses. In general, NO has been largely accepted as a signaling molecule that works in different processes. Among the most relevant ways NO and the NO-derived reactive species can accomplish their biological functions it is worthy to mention post-translational protein modifications. In the last years, S-nitrosylation has been the most studied NO-dependent regulatory mechanism. Briefly, S-nitrosylation is a redox-based mechanism for cysteine residue modification and is being recognized as a ubiquitous regulatory reaction comparable to phosphorylation. Therefore, it is emerging as a crucial mechanism for the transduction of NO bioactivity in plants and animals. In this mini-review, we provide an overview on S-nitrosylation of target proteins related to hormone networks in plants.